• Title/Summary/Keyword: Ag(10%) ink

Search Result 46, Processing Time 0.027 seconds

Manufacturing of Ag Nano-particle Ink-jet Printer and the Application into Metal Interconnection Process of Si Solar Cells (Si 태양전지 금속배선 공정을 위한 나노 Ag 잉크젯 프린터 제작 및 응용)

  • Lee, Jung-Tack;Choi, Jae-Ho;Kim, Ki-Wan;Shin, Myoung-Sun;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 2011
  • We manufactured the inkjet printing system for the application into the nano Ag finger line interconnection process in Si solar cells. The home-made inkjet printer consists of motion part for XY motion stage with optical table, head part, power and control part in the rack box with pump, and ink supply part for the connection of pump-tube-sub ink tanknozzle. The ink jet printing system has been used to conduct the interconnection process of finger lines on Si solar cell. The nano ink includes the 50 nm-diameter. Ag nano particles and the viscosity is 14.4 cP at $22^{\circ}C$. After processing of inkjet printing on the finger lines of Si solar cell, the nano particles were measured by scanning electron microscope. After the heat treatment at $850^{\circ}C$, the finger lines showed the smooth surface morphology without micropores.

A Study on fabrication of the Ag fine pattern using Near Field Electro Spinning(NFES) (근접장 전기방사 방식을 이용한 Ag 미세 패턴 형성)

  • Sim, Hyo-Sun;Seo, Hwa-Il;Youn, Doo-Hyeb
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • These days, printed electronics attract attention from electronics industry. In this paper, the fabrication of the fine patterns by Near Field Electro Spinning (NFES) was studied by using Ag ink on silicon wafer (substrate). Two types of ink, the high viscous ink Ag-200 and low viscous ink Ag-15, were used. The fine and uniform patterns were easily fabricated by using Ag-200 because jet breakup is less occurred in high viscosity solution. As increasing flow rate of solution, aspect ratio of Ag pattern decreased. And there was optimum applied voltage for fine pattern. In case of Ag-200, the optimum applied voltage was about 2.02KV. When pattern was fabricated by NFES, the pattern width and height were affected by many factors such as viscosity, flow rate of solution, applied voltage etc.

Study on the characteristics of transpatent electronic Ag (10%) ink by sintering conditions (투명전자잉크 Ag(10%)의 소성조건에 따른 특성 연구)

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.59-60
    • /
    • 2008
  • In this paper, we have investigated the sintering of the organometallic silver electronic ink. We have changed the sintering temperature from 100 to $300^{\circ}C$ in the various atmospheres. The sheet resistance was abruptly changed at the temperature range between 115 and $120^{\circ}C$, due to the f of the crystalline silver resulting from the dissociation of Ag complex, which phenomenon has been confirmed by X-ray diffraction. The grain sizes of Ag films were about 50nm and 70nm at the sintering temperatures of 115 and $150^{\circ}C$, respectively.

  • PDF

Characterization of Silver Inkjet Overlap-printing through Cohesion and Adhesion

  • Lee, Sang-Ho;Cho, Young-June
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.91-96
    • /
    • 2012
  • We introduce an understanding of silver (Ag) inkjet overlap-printing characteristics from the viewpoints of cohesion between ink droplets and adhesion between an ink droplet and a surface. The printing characteristics were closely monitored by changing the surface energy to elucidate the effect of adhesion and cohesion on printing instability, such as droplet merging and line bulging. The surface energy of the substrate was changed through the hydrophilization of a hydrophobic fluorocarbon-coated surface. The surface energy and ink wettability of the prepared surfaces were characterized using sessile drop contact angle analysis, and printing instability was observed using an optical microscope after drop-on-demand inkjet printing with a 50% overlap in diameter of deposited singlet patterns. We found that the surface energy is not an appropriate indicator based on the experimental results of Ag ink printing on a hydrofluoric-treated silicon surface. The analytical approach using adhesion and cohesion was helpful in understanding the instability of the inkjet overlap-printing, as adhesion and cohesion represent the direct interfacial relationship between the Ag inks used and the substrate.

A new nano-composite carbon ink for disposable dopamine biosensors (나노컴포지트 카본 잉크가 전착된 일회용 도파민 바이오센서)

  • Dinakaran, T.;Chang, S.-C.
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.

Interfacial Microstructures between Ag Wiring Layers and Various Substrates (Ag 인쇄배선과 이종재료기판과의 접합계면)

  • Kim, Keun-Soo;Suganuma, Katsuaki;Huh, Seok-Hwan
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.90-94
    • /
    • 2011
  • Ag metallic particles from nano-scale to submicron-scale are combined with organic solvent to provide fine circuits and interconnection. Ink-jet printing with Ag nano particle inks demonstrated the potentials of the new printed electronics technology. The bonding at the interface between the Ag wiring layer and the various substrates is very important. In this study, the details of interfaces in Ag wiring are investigated primarily by microstructure observation. By adjusting the materials and sintering conditions, nicely formed interfaces between Ag wiring and Cu, Au or organic substrates are achieved. In contrast, transmission electron microscope (TEM) image clearly shows interface debonding between Ag wiring and Sn substrate. Sn oxides are formed on the surface of the Sn plating. The formation of these is a root cause of the interface debonding.

Study of Specific Resistance of Conductive Ink According to Temperature During Laser Sintering Process (전도성 잉크의 레이저 열경화 공정 시 온도에 따른 비저항 연구)

  • Lee, Dae-Geon;Park, Yong-Han;Park, Ji-Young;Kim, Dong-Keun;Moon, Yoon-Jae;Moon, Seung-Jae;Hwang, Jun-Young;Kang, Heui-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.119-124
    • /
    • 2013
  • In this study, the two-dimensional transient temperature of printed Ag nanoparticle ink during continuous wave laser sintering was calculated. Ag nanoparticle ink was printed on a glass substrate by inkjet printing. Then, a 532-nm continuous wave laser with different laser intensities was irradiated on the printed Ag nanoparticle ink for 60 s. During laser irradiation, the in-situ specific resistance of the sintered ink was measured. To obtain the transient temperature of the sintered ink during the laser sintering process, a two-dimensional transient heat conduction equation was derived by applying the Wiedemann-Franz law. It was found that the specific resistance of the sintered ink decreased with an increase in the sintering temperature of the printed ink.

The Effect of Particle Size on Rheological Properties of Highly Concentrated Ag Nanosol (초 고농도 Ag 나노 졸의 입자크기 제어가 잉크 점성거동에 미치는 영향)

  • Song, Hae-Chon;Nham, Sahn;Lee, Byong-Seok;Choi, Young-Min;Ryu, Beyong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • The rheological properties of highly concentrated Ag nano sol depending on particle size were studied. The Ag nano sol was prepared by reducing the Ag ion in aqueous solution. The size of Ag nano particle was controlled by two steps of nucleation and growth, and the thickness of adsorption layer was varied by molecular weight of polyelectrolytes. The polyelectrolytes acted as not only ionic complex agent in ionic state and but also dispersant after formation of Ag nano sol. The effective volume was controlled by combination of varying the molecular weight of polyelectrolytes and the size Ag nano sol. The particle size and the viscosity of nano sol were characterized by particle size analyzer, HR-TEM and cone & plate viscometer. It was found that the 10 nm and 40 nm-sized Ag nano sols were prepared by controlling the nucleation and growth steps, respectively. Finally, we could prepare highly concentrated Ag nano sol over 50 wt%.

Effect of PVP(polyvinylpyrrolidone) on the Ag Nano Ink Property for Reverse Offset Printing (PVP(polyvinylpyrrolidone)가 리버스 오프셋용 은 나노 잉크 물성에 미치는 영향)

  • Han, Hyun-Suk;Kwak, Sun-Woo;Kim, Bong-Min;Lee, Taik-Min;Kim, Sang-Ho;Kim, In-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.476-481
    • /
    • 2012
  • Among the various roll-to-roll printing technologies such as gravure, gravure-offset, and reverse offset printing, reverse offset printing has the advantage of fine patterning, with less than 5 ${\mu}m$ line width. However, it involves complex processes, consisting of 1) the coating process, 2) the off process, 3) the patterning process, and 4) the set process of the ink. Each process demands various ink properties, including viscosity, surface tension, stickiness, and adhesion with substrate or clich$\acute{e}$; these properties are critical factors for the printing quality of fine patterning. In this study, Ag nano ink was developed for reverse offset printing and the effect of polyvinylpyrrolidone(PVP), used as a capping agent of Ag nano particles, on the printing quality was investigated. Ag nano particles with a diameter of ~60 nm were synthesized using the conventional polyol synthesis process. Ethanol and ethylene glycol monopropyl ether(EGPE) were used together as the main solvent in order to control the drying and absorption of the solvents during the printing process. The rheological behavior, especially ink adhesion and stickiness, was controlled with washing processes that have an effect on the offset process and that played a critical role in the fine patterning. The electrical and thermal behaviors were analyzed according to the content of PVP in the Ag ink. Finally, an Ag mesh pattern with a line width of 10 ${\mu}m$ was printed using reverse offset printing; this printing showed an electrical resistivity of 36 ${\mu}{\Omega}{\cdot}cm$ after sintering at $200^{\circ}C$.

Fabrication of gate electrode for OTFT using screen-printing and wet-etching with nano-silver ink

  • Lee, Mi-Young;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.889-892
    • /
    • 2009
  • We have developed a practical printing technology for the gate electrode of organic thin film transistors(OTFTs) by combining screen-printing with wet-etching process using nano-silver ink as a conducting material. The screen-printed and wet-etched Ag electrode exhibited a minimum line width of ~5 um, the thickness of ~65 nm, and a resistivity of ${\sim}10^{-6}{\Omega}{\cdot}cm$, producing good geometrical and electrical characteristics for gate electrode. The OTFTs with the screen-printed and wet-etched Ag electrode produced the saturation mobility of $0.13cm^2$/Vs and current on/off ratio of $1.79{\times}10^6$, being comparable to those of OTFT with the thermally evaporated Al gate electrode.

  • PDF