• Title/Summary/Keyword: After-Cooling analysis

Search Result 337, Processing Time 0.026 seconds

Analysis of Sea Surface Temperature Distribution Around Uljin Nuclear Power Station Using Time Series Landsat Satellite Images (시계열 Landsat 위성영상을 활용한 울진 원자력발전소 주변 해수온도 분포분석)

  • Choi, Seung-Pil;Yook, Woon-Soo;Hong, Sung-Chang;Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.51-57
    • /
    • 2007
  • In this study, We analyzed change of sea surface temperature due to cooling water around nuclear power station. Study area is around of Uljin nuclear power station, which is relatively large power station. There are many problems in monitering environmental change around of nuclear power station, because area is relatively large. We used Landsat 5, 7 Imagery which are useful in temperature analysis and can be easily obtained. After we georeferenced Landsat Imagery, radiance and sea surface temperature were calculated. As a result, As we compared sea surface temperature of surrounding area of nuclear power station with same area located 3 km east, there are $2.049^{\circ}C$ temperature difference.

  • PDF

Effect of Induction Heat Bending Process on the Corrosion Properties of 316 Stainless Steel Pipes for Nuclear Power Plant (원자력발전소용 316 스테인리스강 배관의 부식특성에 미치는 유도가열벤딩공정의 영향)

  • Shin, Mincheol;Kim, Young Sik;Kim, Kyungsu;Chang, Hyunyoung;Park, Heungbae;Sung, Giho
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.87-94
    • /
    • 2014
  • Recently, the application of bending products has been increased since the industries such as automobile, aerospace, ships, and plants greatly need the usage of pipes. For facility fabrication, bending process is one of key technologies for pipings. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. Because of local heating and compressive strain, detrimental phases may be precipitated and microstructural change can be induced. This work focused on the effect of induction heat bending process on the properties of ASME SA312 TP316 stainless steel. Evaluation was done on the base metal and the bended areas before and after heat treatment. Microstructure analysis, intergranular corrosion test including Huey test, double loop electropotentiokinetic reactivation test, oxalic acid etch test, and anodic polarization test were performed. On the base of microstructural analysis, grain boundaries in bended extrados area were zagged by bending process, but there were no precipitates in grain and grain boundary and the intergranular corrosion rate was similar to that of base metal. However, pitting potentials of bended area were lower than that of the base metal and zagged boundaries was one of the pitting initiation sites. By re-annealing treatment, grain boundary was recovered and pitting potential was similar to that of the base metal.

Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System (중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석)

  • Kim, Kyu-Saeng;Lee, Sang-Hyeok;Hong, Kyung-Pyo;Won, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

Analysis of the Economic Efficiency of the District Heating and Gas Engine Co-Generation System Compared with the Central Heating System (중앙난방방식을 지역난방과 소형열병합난방 방식으로 전환 시 경제성 비교 분석)

  • Kim, Kyu Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.544-551
    • /
    • 2015
  • This study was conducted to determine the LCC of apartment complexes with district heating and a cogeneration system. For the purpose of analyzing LCC according to the size of the apartment complex, 500, 1,500, and 4,000-unit model apartments were selected. Analysis was performed on the design of the heating system and the life cycle cost including total construction cost, maintenance and operation cost for the duration of the project period (15 years). According to the calculated results, 1) The initial cost of the cogeneration system for 500, 1,500, and 4,000-unit apartments is higher than that of the district heating system by 20%, 13%, and 12%, respectively. 2) In the case of the cogeneration system, the payback period by electric generation was found to be 5.21, 4.92 and 4.47 years, and saving cost was calculated to be 29 billion won, 94 billion won and 262 billion won after the payback period for 500, 1,500, and 4,000-unit apartments, respectively. 3) The LCC values of the cogeneration system were 1.12, 1.07 and 1.06 times larger than those of the district system according to the size of the apartment complex. In this study, the district heating system was found to be more efficient than the cogeneration system in terms of LCC reduction. 4) District heating is affected by fuel bills, so energy efficiency should be improved through recovering waste heat (incineration heat, etc.). Also, district cooling should be provided according to heat use to keep the temperature high in winter and low in summer.

Analysis of Cool-down Operation of Liquid Hydrogen Tank (액체수소 저장탱크의 냉각 방법 분석)

  • HWALONG YOU;BYUNGIL CHOI;KYUHYUNG DO;TAEHOON KIM;CHANGHYUN KIM;MINCHANG KIM;YONGSHIK HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.641-649
    • /
    • 2023
  • This study analyzes the cool-down process of liquid hydrogen storage tanks, which have advantages in terms of large-capacity transfer, storage, and utilization as hydrogen demand increases. A hydrogen liquefaction plant is selected for analysis and an efficient tank cooling method is sought by comparing the time required for the cool-down process with the gas consumption in connection with the gassing-up process required for the operation of the liquid hydrogen storage tank. The results of this study can be referred to in the operation process after the initial start-up and maintenance of the hydrogen liquefaction plant.

Effect of Timing of Light Curing on the Shear Bond Strength of Three Self-adhesive Resin Cements

  • Yoo, Yeon-Kwon;Kim, Sung-Hun;Ryu, Jae-Jun;Ryu, Jae-Jun
    • Journal of Korean Dental Science
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • Objectives. The objectives of this study were: 1) to compare the effect of varying timing of light curing on shear bond strength, and; 2) to compare the shear bond strength of three self-adhesive cements. Materials and methods. A total of 72 extracted non-carious teeth were divided into 24 for Unicem tests, 24 for Maxcem tests, and 24 for Biscem tests; they were assigned 3 * 2 subgroups of 12 teeth each. The specimens were prepared as follows: 1) The calculus and periodontal ligament were removed from the teeth; 2) The teeth were stored in normal saline; 3) The occlusal enamel of each tooth was removed using high-speed coarse diamond burs under water cooling, and; 4) Finally, the teeth were flattened by 600-grit silicone carbide paper disks. Resin blocks were adhered using either Unicem, Maxcem, or Biscem. Light curing timing was divided into two groups: U10, M10, and B10 were exposed to light after 10 seconds, and; U150, M150, and B150 on the other side were exposed to light after 150 seconds. Shear bond strength was measured by a Universal testing machine with cross head speed of 1mm/min. T-test and One way ANOVA were used for the statistical analysis of data. Results. The shear bond strength of U150 was not significantly higher than that of U10 (U150: 20.55.7Mpa, U10: 18.73.80Mpa). On the other hand, the shear bond strength of M150 was significantly higher than that of M10. The shear bond strength of B150 was also significantly higher than that of B10 (M150:14.45.7Mpa, M10: 9.94.2Mpa, B150: 24.38.3Mpa, B10: 17.27.3Mpa). When the light curing timing was 10sec after bonding, the shear bond strength of Unicem was highest; the shear bond strength of Biscem was highest when the light curing timing was 150sec after bonding (U10: 18.73.80Mpa, B150: 24.38.3Mpa). Significance. Since Unicem is less sensitive based on light curing timing, dentists seem to use it without considering the light curing timing. Maxcem showed the lowest bonding strength (especially M10). Thus, when using Maxcem, dentists need to delay the light curing after adhesion.

  • PDF

MANAGING A PROLONGED STATION BLACKOUT CONDITION IN AHWR BY PASSIVE MEANS

  • Kumar, Mukesh;Nayak, A.K.;Jain, V;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.605-612
    • /
    • 2013
  • Removal of decay heat from an operating reactor during a prolonged station blackout condition is a big concern for reactor designers, especially after the recent Fukushima accident. In the case of a prolonged station blackout condition, heat removal is possible only by passive means since no pumps or active systems are available. Keeping this in mind, the AHWR has been designed with many passive safety features. One of them is a passive means of removing decay heat with the help of Isolation Condensers (ICs) which are submerged in a big water pool called the Gravity Driven Water Pool (GDWP). The ICs have many tubes in which the steam, generated by the reactor core due to the decay heat, flows and condenses by rejecting the heat into the water pool. After condensation, the condensate falls back into the steam drum of the reactor. The GDWP tank holds a large amount of water, about 8000 $m^3$, which is located at a higher elevation than the steam drum of the reactor in order to promote natural circulation. Due to the recent Fukushima type accidents, it has been a concern to understand and evaluate the capability of the ICs to remove decay heat for a prolonged period without escalating fuel sheath temperature. In view of this, an analysis has been performed for decay heat removal characteristics over several days of an AHWR by ICs. The computer code RELAP5/MOD3.2 was used for this purpose. Results indicate that the ICs can remove the decay heat for more than 10 days without causing any bulk boiling in the GDWP. After that, decay heat can be removed for more than 40 days by boiling off the pool inventory. The pressure inside the containment does not exceed the design pressure even after 10 days by condensation of steam generated from the GDWP on the walls of containment and on the Passive Containment Cooling System (PCCS) tubes. If venting is carried out after this period, the decay heat can be removed for more than 50 days without exceeding the design limits.

Quality Changes in Fresh-Cut Potato (Solanum tuberosum var. Romano) after Low-Temperature Blanching and Treatment with Anti-Browning Agents (저온 blanching 및 갈변저해물질의 처리에 따른 최소가공 감자의 저장 중 품질변화)

  • Hwang, Tae-Young;Jang, Ji-Hyun;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.499-505
    • /
    • 2009
  • Quality changes in fresh-cut potatoes during storage at $4^{\circ}C$ after treatment with low-temperature blanching and antibrowning agents were studied. Fresh-cut potatoes were treated by dipping for 1.5 min in a browning inhibitor solution containing 0.5% (w/v) ascorbic acid, 0.5% (w/v) citric acid, 0.5% (w/v) sodium chloride, 0.1% (w/v) trehalose, and 0.005% (w/v) biotin, at $60^{\circ}C$, with subsequent cooling for 1.5 min and storage at $4^{\circ}C$. The browning properties of fresh-cut potatoes were examined by measurement of polyphenol oxidase (PPO) activity and total phenolic content. Changes in quality attributes over a 14-day period were assessed in terms of titratable acidity, pH, water-soluble solid level, and gas analysis at $4^{\circ}C$. During storage, PPO activity increased, with the lowest activity seen after about 7 days of storage. Treatment with antibrowning solution at $4^{\circ}C$ increased visual sensory attributes during storage. Low-temperature blanching in distilled water more effectively inhibited browning compared with exposure to browning inhibitor solution, as assessed after 7 days of storage. Fresh-cut potatoes respired aerobically after different treatments during storage at $4^{\circ}C$.

A Study on Energy Efficiency Improvement through Building Insulation Diagnosis (건축물 단열 진단을 통한 에너지 효율 개선에 관한 연구)

  • Cho, Kwangmoon
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.9-14
    • /
    • 2021
  • This paper discovers the energy loss factors through the insulation diagnosis of houses or buildings, and proposes directions for energy efficiency improvement. The energy efficiency factor of a building consists of insulation diagnosis, thermal bridge diagnosis, window diagnosis, airtight diagnosis, and equipment diagnosis. Among the residents and facilities in the energy welfare blind spot, an energy efficiency diagnosis was conducted for one senior citizen building located in Naju-si, Jeollanam-do, and energy efficiency diagnosis was conducted after insulation was installed. Energy measurement, diagnosis and analysis were performed using the IoT-based integrated wired/wireless energy diagnosis platform, Energy Finder. As a result of comparison, an overall energy saving rate of 16.38% was achieved. Annual heating energy consumption per unit area decreased from 333.51kWh before construction to 277.35kWh after construction, and annual cooling energy consumption per unit area decreased from 5.51kWh before construction to 5.22kWh after construction. The annual primary energy consumption per unit area decreased from 464.52kWh before construction to 403.69kWh after construction, and the annual energy cost was reduced from 3,063,307.14 won before construction to 2,641,072.49 won after construction. The additional improvement work is needed on the standards affecting energy efficiency other than insulation.

A Study on the Thermal Characteristics of Jeju type Ground Heat Exchanger for Ground Source Heat Pump System applied to Jeju Island (제주도에 설치된 지열 열펌프 시스템용 제주형 지중열교환기의 열특성 연구)

  • Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.32-38
    • /
    • 2020
  • This study summarizes test methods and evaluation methods for examining the thermal characteristics of Jeju-type ground heat exchangers (GHXs) installed on Jeju Island, and analyzes the ground temperature and thermal characteristics of ground heat exchangers installed in various regions by using thermal response tests (TRT). Jeju Island is composed of volcanic rock layers, and the groundwater flow is well developed. A Jeju-type GHX can be installed up to 30 m from groundwater level after drilling a borehole. The ground heat exchanger has a structure in which several pipes are inserted into the borehole. In order to examine the characteristics of the Jeju-type GHX, tests were conducted on ground heat exchangers installed in four places on Jeju Island (Pyoseon, Jeju, Namwon, and Hallym). As a result of the analysis of the Jeju-type ground heat exchanger, the ground circulating water temperature stabilized according to the heat injection, depending on the installed location, and was formed within one to three hours. The ground heat exchanger capacity in Hallym was highest at 73.4 kW (cooling) and 82.8 kW (heating), and the Jeju-type calculation was lowest at 34.1 kW (cooling) and 23.3 kW (heating).