• Title/Summary/Keyword: After-Cooling analysis

Search Result 335, Processing Time 0.023 seconds

Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Subsequent Cooling after Ejection (사출 성형품의 금형내 잔류음력과 이형후 냉각에 의한 후변형 해석)

  • Yang, Sang-Sik;Gwon, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.340-348
    • /
    • 2002
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of thermo-rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint have been done. Free volume theory has been used to represent the non-equilibrium density state during the fast cooling. At ejection, instantaneous deformation takes place due to the redistribution of in-mold residual stress. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of out-of-mold deformation. In this study, emphasis is also made on the treatment with regard to lateral constraint types during molding process. Two typical mold geometries are used to test the numerical simulation modeling developed in this study.

Effect of supercooling on the cooling in horizontal cylindrical annuli (이중원관의 냉각과정에 미치는 과냉각의 영향)

  • Yun, Jeong-In;Kim, Jae-Dol;Kato, Toyofumi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3313-3321
    • /
    • 1996
  • A fundamental study in cooling and solidification process focused on ice storage was performed, including the interesting phenomena of density inversion, supercooling and dendritic ice. A numerical study was performed for natural convection and ice formation in the cooling and freezing processes with supercooling in a space between double cylinders. When water was cooled under the freezing point by a cooling wall in a cavity, solidification was not started at once, but a subcooled region was formed near the wall. Especially, when the cooling rate was low, subcooled region extended to a wide area. However, after a few minutes, supercooling is released by some triggers. Dendritic ice is suddenly formed within a subcooled region, and a dense ice layer begins to be developed from the cooling wall. Due to the difficulties, most previous studies on solidification process with numerical methods had not treated the supercooling phenomena, i.e. the case considering only the growth of dense ice. In this study, natural convection and ice formation considering existence of supercooling and dendritic ice were analyzed numerically with using finite difference method and boundary fixing method. The results of numerical analysis were well compared with the experimental results.

The effect of different cooling rates and coping thicknesses on the failure load of zirconia-ceramic crowns after fatigue loading

  • Tang, Yu Lung;Kim, Jee-Hwan;Shim, June-Sung;Kim, Sunjai
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.152-158
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the influence of different coping thicknesses and veneer ceramic cooling rates on the failure load of zirconia-ceramic crowns. MATERIALS AND METHODS. Zirconia copings of two different thicknesses (0.5 mm or 1.5 mm; n=20 each) were fabricated from scanning 40 identical abutment models using a dental computer-aided design and computer-aided manufacturing system. Zirconia-ceramic crowns were completed by veneering feldspathic ceramics under different cooling rates (conventional or slow, n=20 each), resulting in 4 different groups (CONV05, SLOW05, CONV15, SLOW15; n=10 per group). Each crown was cemented on the abutment. 300,000 cycles of a 50-N load and thermocycling were applied on the crown, and then, a monotonic load was applied on each crown until failure. The mean failure loads were evaluated with two-way analysis of variance (P=.05). RESULTS. No cohesive or adhesive failure was observed after fatigue loading with thermocycling. Among the 4 groups, SLOW15 group (slow cooling and 1.5 mm chipping thickness) resulted in a significantly greater mean failure load than the other groups (P<.001). Coping fractures were only observed in SLOW15 group. CONCLUSION. The failure load of zirconia-ceramic crowns was significantly influenced by cooling rate as well as coping thickness. Under conventional cooling conditions, the mean failure load was not influenced by the coping thickness; however, under slow cooling conditions, the mean failure load was significantly influenced by the coping thickness.

Thermal analysis model for electric water pumps with non-conductive cooling liquid (비전도성 충진액을 포함하는 전동워터펌프 열 해석 모델)

  • Jung, Sung-Taek;Yoon, Seon-Jhin;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.46-52
    • /
    • 2022
  • As the consumer market in the eco-friendly vehicle industry grows, the demand for water pump in a electric car parts market. This study intend to propose a mathematical model that can verify the effect of improving thermal properties when a non-conductive cooling filler liquid is introduced into an electric vehicle water pump. Also, the pros and cons of the immersion cooling method and future development way were suggested by analyzing the cooling characteristics using on the derived analysis solution. Thermal characteristics analysis of electric water pump applied with non-conductive filler liquid was carried out, and the diffusion boundary condition in the motor body and the boundary condition the inside pump were expressed as a geometric model. As a result of analyzing the temperature change for the heat source of the natural convection method and the heat conduction method, the natural convection method has difficulty in dissipating heat because no decrease in temperature due to heat release was found even after 300 sec. Also, it can be seen that the heat dissipation effect was obtained even though the non-conductive filling liquid was applied at the 120 sec and 180 sec in the heat conduction method. It has proposed to minimize thermal embrittlement and lower motor torque by injecting a non-conductive filler liquid into the motor body and designing a partition wall thickness of 2.5 mm or less.

Evaluation of Cooling Process for Marine Shaft Forging Products (선박용 축류 단조품 냉각공정 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.352-357
    • /
    • 2020
  • This study was performed to solve the quality problems of forging propeller shaft components in the marine diesel engines during the final cooling process and provide reasonable guidelines to increase the production of forging products. Residual hydrogen existing on the inside of forging products begins to diffuse and accumulates at the pores, micro-fissures, and grain boundaries as the temperature of forging products begins to decrease and reaches a critical temperature range, and finally transforming into internal defects. These defects were easily found near the surface of products after milling the surface of forging products. In this work, four types of forging products (shaft flange, shaft journal, thrust shaft, and propeller shaft) were chosen to evaluate the temperature history of products during the cooling process, employing non-linear numerical analyses with the ANSYS program. The times elapsed to reach 250 ℃ after cooling were approximately 9 ~ 23 hours for each forging product. These times can be used as cooling process guidelines on the quality and productivity of products after heat treatment.

Effects of cooling systems on physiological responses and intestinal microflora in early gestating sows exposed to high-temperature stress

  • Jeong, Yongdae;Choi, Yohan;Kim, Doowan;Min, Yejin;Cho, Eunsuk;Kim, Joeun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.904-918
    • /
    • 2021
  • This study was conducted to investigate the effect of cooling systems on reproductive performance, body temperature, blood metabolites, and the intestinal microbiome in early gestating sows exposed to high ambient temperature. In total, 39 pregnant sows (Landrace × Yorkshire; 2 parities) were randomly assigned to and maintained in the following three treatment groups (13 sows per group) over days 0 to 35 of pregnancy: (i) air cooling (AC; 26.87 ± 1.23℃), (ii) water-drip cooling (WC; 28.81 ± 0.91℃), and (iii) a lack of cooling with heat stress (HS; 30.72 ± 0.70℃). Backfat thickness was measured before and after HS. Feces were collected on day 0 and 35 d of the trial for microbiome analysis, whereas blood was taken at day 35 of pregnancy and analyzed. Reproductive performance and physiological responses were identified at day 35. Respiration rate along with rectal and skin temperatures were lower (p < 0.05) in the AC group than in the HS and WC groups. Serum blood urea nitrogen values were increased (p < 0.05) in the WC group compared with those measured in the AC and HS groups. Triiodothyronine was found at greater levels (p < 0.05) in the AC than in the HS group. Reproductive performance was not affected by the cooling systems. At the phylum level, fecal pathogenic Spirochaete and Euryarchaeota were found in higher numbers (p < 0.05) in all groups after HS. Similarly, at the genus level, the amount of Treponema was greater (p < 0.05) in all groups after HS. In conclusion, our results suggest that AC or WC can ameliorate or mitigate the adverse effects of HS on the physiological parameters of pregnant sows reared under high temperatures.

Structure design of regenerative cooling chamber of liquid rocket thrust chamber (액체로켓 연소기 재생냉각 챔버 구조설계)

  • Ryu, Chul-Sung;Choi, Hwan-Seok;Lee, Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.109-116
    • /
    • 2005
  • Elastic-plastic structural analysis for regenerative cooling chamber of liquid rocket thrust chamber is performed. Uniaxial tension test is also conducted for the copper alloy in order to get material data necessary for the structure analysis. The results of uniaxial tension test reveal that copper alloy become ductile after brazing process and flow stress becomes lower as temperature becomes higher. As a result of structural analysis using the material data, the deformation of cooling channel is more increased by thermal load than by internal pressure of cooling fluid. Therefore, the results of analysis show that structural stability and cooling performance of combustion thrust chamber which is designed to endure mechanical load and minimized a channel thickness are improved by decreased thermal load as possible.

Numerical Analysis on the Characteristics of Thermal Flow in an Automobile Radiator (자동차용 라디에이터 열유동 특성에 관한 수치해석)

  • Kang, Chang Won;Kim, Tae Joon;Lee, Chi Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.55-61
    • /
    • 2019
  • The purpose of this study was to numerically analyze the heat flow characteristics of an automotive radiator. Heat flow analyses were conducted on the cooling water and outdoor air of the radiator, as well as the temperature distribution of the cooling water after heat transfer. The results of the study revealed that neither heat transfer nor radiator volume was affected by the position of the inlet of cooling water. However, temperature distribution was affected by the position of both the inlet and outlet. In case of heat transfer, three models underwent about 158 kW of heat transfer. The difference in cooling water temperature was about $10^{\circ}C$. In case of pressure drop, the core external air side was reduced to about 1,375 Pa, and the internal cooling water side about 14,570 Pa.

A Study on the Development of the Console with LCD Panel for Exterior Advertizing (LCD 패널을 탑재한 옥외 광고용 콘솔 개발에 관한 연구)

  • Choi, Kab-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • The development of the console for exterior advertizing LCD Panel(LCD Console) is the purpose of this study with regard to importance of display industry. In this study, the most important point is to develop the cooling system for LCD Console. It is developed by using systematic application techniques and statistical tests and analysis to integrate commercial components, cooling fan, heat sink, thermo electronic modules etc, of it. This study, at first, shows design/manufacturing process of the cooling system and the setting process of control factors to control through experimentation. Next, after constructing the complete console, 46 inch LCD Panel and the cooling system are built in, the performance test of it is shown through experimentation.

Injection mold development applying starting mold material, urethane resin(TSR-755) (우레탄레진(TSR-755)을 적용한 시작형 사출금형 연구)

  • Kim, Kwang-Hee;Kim, Jeong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4392-4397
    • /
    • 2012
  • In this study, we used the commercial package (Unigraphics) to construct a junction box cable car when laser plastic parts have been processed using urethane resin(TSR-755) as a starting mold material. After construction, we carried out the filing, packing, cooling, and deforming analyzation using Injection Molding Analysis (Simpoe-Mold) to determine the gate positioning and automatic cooling cycle through the examination. The results show that inserting into the injection mold after processing ceramic has reduced the time of thermal conductivity of molding and cooling; and quick selection of gates and cooling lines could possibly cause an improvement of productivity.