• Title/Summary/Keyword: After Cracking

Search Result 513, Processing Time 0.036 seconds

Crack Prevention of Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트의 균열 억제방안)

  • Lee, Bong-Hak;Choi, Pan-Gil
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.89-96
    • /
    • 2008
  • An increase in the amount of cracking in repaired concrete bridge decks using VES-LMC(Very Early Strength - Latex Modified Concrete ; below VES-LMC) has been noticed by Yun et al(1). Literature indicates that indeed many concrete bridge decks develop transverse cracking, most developing at early ages(3~7 days), many right after construction. The purpose of this study was to establish prevention of map, transverse and longitudinal cracking in VES-LMC and to provide a control methods for minimizing the occurrence of cracks. The proposed prevention against map and transverse cracking was verified by field applications. VES cement was modified, the unit cement contents was reduced into $360kg/m^3$ from $390kg/m^3$, the maximum size of coarse aggregate was increase into 19mm from 13mm, wire mesh and steel fibers were incorporated in concrete mixture. A series of variable combinations were attempted. As a results, the proposed prevention against map and transverse cracking was verified because no crack were occurred until 90 days after overlay.

  • PDF

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Model Experiment (모형 실험에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구)

  • 이대혁;김영근;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 1998
  • Considering the mechanical cracking in the concrete lining of tunnels occurring in relatively short period of time after the construction, there is a need for the study on the mechanical behavior and the cracking characteristics of double lining support system(shotcrete and concrete lining). For the proposed study, downscaled lining models of Kyung-Bu High Speed Railway tunnels were tested. Most longitudinal cracks at about 93 percentage developed within 30 arch degree from the vault. Cracking load was about 30 percentage of the failure load and the deflection under the cracking load was 10 percentage of the deflection under the failure load. The overbreak around the vault contributed to the reduction of the capacity for cracking and failure by the percentage greater than the reduced effective depth. Of several rock block types considered in this research, the triangular block was the most critical, and the right triangular block under eccentric load was secondly critical for the stability of the tunnel lining system. The dimensionless support reaction curves were derived from the experimental results for single and double lining. The general equation to compute the designed flexural moment was modified.

  • PDF

Effect of Ash Content in Base Paper on Fold Cracking of Coated Paper (원지의 충전물 함량이 도공지의 접힘 터짐에 미치는 영향)

  • Seo, Dongil;Oh, Kyu Deok;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • High loading of base paper is regarded as one of reasons to aggravate fold cracking of coated paper. But the relationship between the ash content of base paper and fold cracking of coated paper has not been shown yet. We investigated the effect of ash content in base paper on the fold cracking of coated paper. Handsheets with three different ash contents (19.5-23.5%) were prepared, and double layered coating were applied on the top side of the handsheets. A gravimetric water retention meter (AA-GWR) was employed to fold the paper with a uniform pressure after solid printing on the coated surface. The fold cracking was digitized by calculating the cracked area by means of an image analysis technique. Results suggested that high ash content in the base paper increased the fold cracking of the outer surface of coated papers. In the case of inner surface greater fold crack areas were obtained, and the number of cracks decreased because long and wide cracks were formed. Reduction in tensile strength and thickness appeared to give greater fold cracking for highly loaded papers.

Evaluation of HIC Resistance for Thick-wall Welded Pipe (후육 용접 강관의 HIC 저항성 평가)

  • Seo Jun Seok;Kim Hee Jin;Ryoo Hoi-Soo
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.34-39
    • /
    • 2005
  • It is required for the steel materials used in the sour environment to have sufficient resistance to hydrogen induced cracking(HIC). For line pipe steels, HIC resistance could be varied during pipe making process due to the large plastic deformation applied in the thick-wall pipe. In order to figure out such effect, HIC tests were performed not only in the plate condition but in the pipe condition and their results were compared in terms of cracking ratio. Test results demonstrated a detrimental effect of plastic deformation to HIC resulting in a substantial increase in the cracking ratio after pipe forming process. All of the cracks found in the pipe material were located in the outer layer of pipe where the tensile strain was resulted during pipe forming stage. In order to understand the HIC resistance of the pipe but in the plate condition, it was suggested to pre-strain the plate to some extent before the HIC test.

A study on the cracking of tunnel lining by measurement and numerical analysis (계측 및 수치해석을 통한 터널 라이닝의 균열 원인 연구)

  • Hwang, Hak;Jung, Hun-Chul;Kim, Yu-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.33-40
    • /
    • 2001
  • In this research, the cracking of tunnel concrete lining was investigated and analyzed through long-term measurement and nonlinear numerical analysis. For one year after the casting of lining, the stresses and strains were measured by the sensors installed in hard rock tunnel lining. The measurements showed that only small stresses which were less than cracking stress occurred in every survey sections regardless of sensor directions. It could be induced that the external load applied to the lining was small or ignorable. Also, it was carried out short-term numerical analysis based on such site condition as ambient temperature, the- degree of overbreak and mold staying period. Long-term numerical analysis based on creep & shrinkage and nonlinear cracking was carried out. The output showed that construction condition and ambient environments could make the lining concrete crack without external loads. The cracks formed in this process does not indicate the structural instability of the tunnel.

  • PDF

Possible Factors Affecting Crack Development in Ginseng Roots (인삼뿌리의 균열발생에 관한 연구)

  • 김요태
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.63-66
    • /
    • 1990
  • The development of cracking in ginseng roots was studied to elucidate the factors affecting it in the field. The cracking of 6-year-old ginseng roots harvested in late October callld be induced in 2 days after soaking in water or in watersatllrated soil. However, it callld be slowed down by approximately 10 days when the roots were kept at a low temperature(5$^{\circ}C$). Roots excavated in late May did not develop cracking tinder the conditions tested. There was no significant difference between rice-straw shade and P.E. net shade in the rate of cracked ginseng roots. Which varied with ginseng varieties in relation to shade material. The rate of cracked roots was about 40% in 6-year plants, but it was extremely high (55.6%) in rusty roots. Healing of the wound formed by cracking was generally low but varied between harvest years.

  • PDF

A Case Study of Concrete Pavement Deterioration by Alkali-Silica Reaction in Korea

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The concrete pavement of the Seohae Highway in Korea has suffered from serious distress, only four to seven years after construction. Deterioration due to Alkali-Silica Reaction (ASR) has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the deterioration caused by an alkali-silica reaction of concrete pavement in Korea. The investigation methods included visual inspection and Automatic Road Analyzer (ARAN) analysis of surface cracks, coring for internal cracks, stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as follows: the crack pattern of the concrete pavement in Korea was longitudinal cracking, map cracking or D-cracking. Local areas of damage were noticed four to five years after construction. The cracks started from edges or joints and spread out to slabs. The most intensive cracking was observed at the intersection of the transverse and longitudinal joints. Where cracking was the most intense, pieces of concrete and aggregate had spalled away from top surface and joint interface area. The progress of deterioration was very fast. The reaction product of alkali-silica gel was clearly identified by its generally colorless, white, or very pale yellow hue seen through a stereo optical microscopy. The typical locations of the reaction product were at the interface between aggregate and cement paste in a shape of a rim, within aggregate particles in the cracks, and in the large void in the cement paste. Most of the white products were found at interface or internal aggregates. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe from alkali-silica reaction.

EFFECT OF CYCLIC STRAIN RATE AND SULFIDES ON ENVIRONMENTALLY ASSISTED CRACKING BEHAVIORS OF SA508 GR. 1A LOW ALLOY STEEL IN DEOXYGENATED WATER AT 310℃

  • Jang, Hun;Cho, Hyun-Chul;Jang, Chang-Heui;Kim, Tae-Soon;Moon, Chan-Kook
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • To understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$, the fatigue surface and a sectioned area of specimens were observed after low cycle fatigue tests. On the fatigue surface of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and a blunt crack tip were observed. Therefore, metal dissolution could be the main cracking mechanism of the material at this strain rate. On the other hand, on the fatigue surfaces of the specimens tested at strain rates of 0.04 and 0.4 %/s, brittle cracks and flat facets, which are evidences of the hydrogen induced cracking, were observed. In addition, a tendency of linkage between the main crack and the micro-cracks was observed on the sectioned area. Therefore, at higher strain rates, the main cracking mechanism could be hydrogen induced cracking. Additionally, evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. Thus, despite the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$.

Crack and Deformation Behaviors of Steel Fiber Reinforced Concrete Slab Model Specimens Using Domestic Steel Fiber (국내 강섬유를 사용한 강섬유보강 콘크리트 슬래브 모델의 균열 및 변형특성)

  • 박승범;홍석주;이봉춘;조춘근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.319-324
    • /
    • 1999
  • This study is to investigate the properties on the load-deflection and fracture behaviors of the steel fiber reinforced concrete(SFRC) slab model specimens, Steel fibers of indent, crimp, and end hook shape were considered to reinforce the matrix under various mixing conditions and proportions. Initial cracking load, maximum load, and energy absorption capacity(load carrying capacity) of SFRC panel specimen increased with increase of steel fiber contents. And the plain concrete slab was fractured abruptly after maximum load but SRFC slabs were fractured smoothly by steel fibers in concrete matrix operated as cracking resistance force after maximum load. Indent, crimp and end hook shape steel fibers were effective in reinforcing the matrices but end hook type fiber were superior to indent and crimp type fibers.

  • PDF