• Title/Summary/Keyword: Aerosol data

Search Result 368, Processing Time 0.025 seconds

Future Changes in Surface Radiation and Cloud Amount over East Asia under RCP Scenarios (RCP 시나리오에 따른 미래 동아시아 지표복사에너지와 운량 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Shim, Sungbo;Byun, Youngwha
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.433-442
    • /
    • 2016
  • In this study, we examine future changes in surface radiation associated with cloud amount and aerosol emission over East Asia. Data in this study is HadGEM2-CC (Hadley Centre Global Environmental Model version 2, Carbon Cycle) simulations of the Representative Concentration Pathways (RCPs) 2.6/4.5/8.5. Results show that temperature and precipitation increase with rising of the atmosphere $CO_2$. At the end of $21^{st}$ century (2070~2099) relative to the end of $20^{st}$ century (1981~2005), changes in temperature and precipitation rate are expected to increase by $+1.85^{\circ}C/+6.6%$ for RCP2.6, $+3.09^{\circ}C/+8.5%$ for RCP4.5, $+5.49^{\circ}C/10%$ for RCP8.5. The warming results from increasing Net Down Surface Long Wave Radiation Flux (LW) and Net Down Surface Short Wave Radiation Flux (SW) as well. SW change increases mainly from reduced total Aerosol Optical Depth (AOD) and low-level cloud amount. LW change is associated with increasing of atmospheric $CO_2$ and total cloud amount, since increasing cloud amounts are related to absorb LW radiation and remit the energy toward the surface. The enhancement of precipitation is attributed by increasing of high-level cloud amount. Such climate conditions are favorable for vegetation growth and extension. Expansion of C3 grass and shrub is distinct over East Asia, inducing large latent heat flux increment.

PM10 Exposure Characteristics During the Harvesting, Plowing, Sowing, Planting, and Decapitation Tasks of Agricultural Workplaces in South Korea (수확, 경운정지, 파종, 정식, 순지르기 작업에서 발생하는 PM10 노출 특성)

  • Jung, Wongeon;Seo, Mintae;Kim, Hyocher
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.137-145
    • /
    • 2022
  • Objectives: This study aimed to identify PM10 mass concentration levels and conduct peak identification during five tasks in agricultural works. Methods: We investigated five agricultural tasks in 12 farms, which were harvesting, plowing, sowing, planting, and decapitation. All samples were measured by using the portable aerosol spectrometer(PAS 1.108) and the aerosol monitor(SidePak AM520). The collected data were compared with the national PM10 concentrations. They were calculated to descriptive statistics, independent t-test, or ANOVA, and the peak identification on time series graph. Results: The ten investigated farms showed no significant difference with the national PM10 concentrations, but the two greenhouses(AM, 143.31, 85.16 ㎍/m3) showed significant difference(p<0.05). As a result of the peak identification, the harvesting tasks showed repeated peak occurrence with the background concentration level of about 50 ㎍/m3. For plowing and sowing tasks, the peak occurred intermittently when the working was conducted near the sampling sites. Among the five tasks, the arithmetic mean of the harvesting task was 138.84±294.71 ㎍/m3, which was significantly higher than the other tasks(p<0.05). In addition, the case of using a tractor was higher than the case of not using the tractor(p<0.05), and the driver's seat showed the highest concentration(AM, 95.81 ㎍/m3). Conclusions: Works in greenhouses might have exposure to PM10, while outdoor works is similar to general atmospheric PM10 concentration levels. However, there is a possibility of intermittent exposure to high concentrations of PM10 depending on the characteristics of agricultural tasks.

CFD simulation of cleaning nanometer-sized particulate contaminants using high-speed injection of micron droplets (초고속 미세 액적 충돌을 이용한 나노미터 크기 입자상 오염물질의 세정에 대한 CFD 시뮬레이션)

  • Jinhyo, Park;Jeonggeon, Kim;Seungwook, Lee;Donggeun, Lee
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.129-136
    • /
    • 2022
  • The line width of circuits in semiconductor devices continues to decrease down to a few nanometers. Since nanoparticles attached to the patterned wafer surface may cause malfunction of the devices, it is crucial to remove the contaminant nanoparticles. Physical cleaning that utilizes momentum of liquid for detaching solid nanoparticles has recently been tested in place of the conventional chemical method. Dropwise impaction has been employed to increase the removal efficiency with expectation of more efficient momentum exchange. To date, most of relevant studies have been focused on drop spreading behavior on a horizontal surface in terms of maximum spreading diameters and average spreading velocity of drop. More important is the local liquid velocity at the position of nanoparticle, very near the surface, rather than the vertical average value. In addition, there are very scarce existing studies dealing with microdroplet impaction that may be desirable for minimizing pattern demage of the wafer. In this study, we investigated the local velocity distribution in spreading liquid film under various impaction conditions through the CFD simulation. Combining the numerical results with the particle removal model, we estimated an effective cleaning diameter (ECD), which is a measure of the particle removal capacity of a single drop, and presented the predicted ECD data as a function of droplet's velocity and diameter particularly when the droplets are microns in diameter.

A study on possibility of land vegetation observation with Mid-resolution sensor

  • Honda, Y.;Moriyama, M.;Ono, A.;Kajiwara, K.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.349-352
    • /
    • 2007
  • The Fourth Assessment Report of IPCC predicted that global warming is already happening and it should be caused from the increase of greenhouse gases by the extension of human activities. These global changes will give a serious influence for human society. Global environment can be monitored by the earth observation using satellite. For the observation of global climate change and resolving the global warming process, satellite should be useful equipment and its detecting data contribute to social benefits effectively. JAXA (former NASDA) has made a new plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, provides an optical sensor from Near-DV to TIR. Characteristic specifications of SGLI are as follows; 1) 250 m resolutions over land and area along the shore, 2) Three directional polarization observation (red and NIR), and 3) 500 m resolutions temperature over land and area along shore. These characteristics are useful in many fields of social benefits. For example, multi-angular observation and 250 m high frequency observation give new knowledge in monitoring of land vegetation. It is expected that land products with land aerosol information by polarization observation are improved remarkably. We are studying these possibilities by ground data and satellite data.

  • PDF

Status of Observation Data at Ieodo Ocean Research Station for Sea Level Study

  • Han, MyeongHee
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.323-343
    • /
    • 2020
  • Observation data measured at Ieodo Ocean Research Station (IORS) have been utilized in oceanographic and atmospheric studies since 2003. Sea level data observed at the IORS have not been paid attention as compared with many other variables such as aerosol, radiation, turbulent flux, wind, wave, fog, temperature, and salinity. Total sea level rises at the IORS (5.6 mm yr-1) from both satellite and tide-gauge observations were higher than those in the northeast Asian marginal seas (5.4 mm yr-1) and the world (4.6 mm yr-1) from satellite observation from 2009 to 2018. The rates of thermosteric, halosteric, and steric sea level rises were 2.7-4.8, -0.7-2.6, 2.3-7.4 mm yr-1 from four different calculating methods using observations. The rising rate of the steric sea level was higher than that of the total sea level in the case with additional data quality control. Calculating the non-steric sea level was not found to yield meaningful results, despite the ability to calculate non-steric sea level by simply subtracting the steric sea level from total sea level. This uncertainty did not arise from the data analysis but from a lack of good data, even though tide, temperature, and salinity data were quality controlled two times by Korea Hydrographic and Oceanography Agency. The status of the IORS data suggests that the maintenance management of observation systems, equipment, and data quality control should be improved to facilitate data use from the IORS.

Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters (모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시)

  • Kang, Yoojin;Cho, Dongjin;Han, Daehyeon;Im, Jungho;Lim, Joongbin;Oh, Kum-hui;Kwon, Eonhye
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1029-1042
    • /
    • 2021
  • As part of the next-generation Compact Advanced Satellite 500 (CAS500) project, CAS500-4 is scheduled to be launched in 2025 focusing on the remote sensing of agriculture and forestry. To obtain quantitative information on vegetation from satellite images, it is necessary to acquire surface reflectance through atmospheric correction. Thus, it is essential to develop an atmospheric correction method suitable for CAS500-4. Since the absorption and scattering characteristics in the atmosphere vary depending on the wavelength, it is needed to analyze the sensitivity of atmospheric correction parameters such as aerosol optical depth (AOD) and water vapor (WV) considering the wavelengths of CAS500-4. In addition, as CAS500-4 has only five channels (blue, green, red, red edge, and near-infrared), making it difficult to directly calculate key parameters for atmospheric correction, external parameter data should be used. Therefore, thisstudy performed a sensitivity analysis of the key parameters (AOD, WV, and O3) using the simulated images based on Sentinel-2 satellite data, which has similar wavelength specifications to CAS500-4, and examined the possibility of using the products of GEO-KOMPSAT-2A (GK2A) as atmospheric parameters. The sensitivity analysisshowed that AOD wasthe most important parameter with greater sensitivity in visible channels than in the near-infrared region. In particular, since AOD change of 20% causes about a 100% error rate in the blue channel surface reflectance in forests, a highly reliable AOD is needed to obtain accurate surface reflectance. The atmospherically corrected surface reflectance based on the GK2A AOD and WV was compared with the Sentinel-2 L2A reflectance data through the separability index of the known land cover pixels. The result showed that two corrected surface reflectance had similar Seperability index (SI) values, the atmospheric corrected surface reflectance based on the GK2A AOD showed higher SI than the Sentinel-2 L2A reflectance data in short-wavelength channels. Thus, it is judged that the parameters provided by GK2A can be fully utilized for atmospheric correction of the CAS500-4. The research findings will provide a basis for atmospheric correction of the CAS500-4 in the future.

The Relative Contribution of SO2-to-sulfate Conversion Processes over the Metropolitan Seoul Area (수도권에서 아황산가스의 황산염으로 전환시 각 과정의 상대적 기여도)

  • 배수야;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.451-465
    • /
    • 2003
  • The major conversion processes of SO$_2$ to sulfate are reactions in gaseous, aqueous phase and on dust surface. Using the measurement data in Ganghwa, the background area of metropolitan Seoul Area, the relative contiribution of the conversion processes are estimated. Generally, aqueous cloud if the most important conversion path followed by dust surface, gas, and aqueous aerosol. Importance of conversion on dust surface increases for the dust storm period. The total conversion rate values over the metropolitan Seoul area are between 1.5 and 8.8$\times$10$^{-11}$ mole m$^{-3}$ air.

Efficiency test Evaluation Method for Nebulizer & Medicinal Nonventilatory Nebulizer (의료용 흡입기 및 분무기의 성능 평가 연구)

  • Kim, S.M.;Jeong, J.H.;Lee, J.H.;Rho, S.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.438-443
    • /
    • 2009
  • Nebulizer is designed to atomize medicinal fluid for patient with small particles(0.5-$5{\mu}m$) and also able to deliver particles from devices to the lungs when patient inhales air. Several particle size measurements are currently used to size aerosol particles. The most commonly used test is the cascade impactor method in as a standard. But, other methods for comparative particle size distribution data such as the particle size range and reproducibility are acceptable. Therefore, in this study a new test methode is suggested for nonventilatory nebulizer evaluation equipment.

A Numerical Analysis of Growth of Non-spherical Silica Particles in a Premixed Flat Flame (예혼합 평면화염에서 비구형 실리카 입자의 성장에 관한 수치해석적 연구)

  • Oh, Se-Baek;Lee, Bang-Weon;Choi, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1351-1358
    • /
    • 2000
  • Two dimensional aerosol dynamics considering the effects of particle generation, coagulation, thermophoresis, sintering and convection has been studied to obtain the growth of non-spherical silica particles in conjunction with determining flame temperature by performing combustion analysis of premixed flat flame. Heat and mass transfer analysis includes 16 species, 29 chemical reaction steps together with oxidation and hydrolysis of SiCl4. The effect of radiation heat loss has also been included. The predictions of flame temperatures and the evolution of particle size distributions were in a reasonable agreement with the existing experimental data.