DOI QR코드

DOI QR Code

A Numerical Analysis of Growth of Non-spherical Silica Particles in a Premixed Flat Flame

예혼합 평면화염에서 비구형 실리카 입자의 성장에 관한 수치해석적 연구

  • 오세백 (서울대학교 대학원 기계공학과) ;
  • 이방원 (서울대학교 정밀기계설계공동연구소 나노입자제어기술연구단) ;
  • 최만수 (서울대학교 기계항공공학부, 정밀기계설계공동연구소 나노입자제어기술연구단)
  • Published : 2000.10.01

Abstract

Two dimensional aerosol dynamics considering the effects of particle generation, coagulation, thermophoresis, sintering and convection has been studied to obtain the growth of non-spherical silica particles in conjunction with determining flame temperature by performing combustion analysis of premixed flat flame. Heat and mass transfer analysis includes 16 species, 29 chemical reaction steps together with oxidation and hydrolysis of SiCl4. The effect of radiation heat loss has also been included. The predictions of flame temperatures and the evolution of particle size distributions were in a reasonable agreement with the existing experimental data.

Keywords

References

  1. Ulrich, G. D., Milnes. B. A., and Subramanian, N.S.. 1976. 'Particle Growth in Flames II. Experimental Results for Silica Particles,' Combust. Sci. Technol, Vol. 14, pp. 243-249
  2. Ulrich. G. D. and Subramanian, N. S., 1977, 'Particle Growth in Flames III. Coalescence as a Rate-Controlling Process,' Combust. Sci. Technol, Vol. 17, pp. 119-126
  3. Ulrich. G. D., and Riehl. J. W., 1982, 'Aggregation and Growth of Submicron Oxide Particles in Flames,' J Colloid interface Sci., Vol. 87, pp. 257-265 https://doi.org/10.1016/0021-9797(82)90387-3
  4. Hurd. A. J. and Flower. W. L., 1988, 'In Situ Growth and Structure of Fractal Silica Aggregates in a Flame,' J. Colloid Interface Sci., Vol. 122, pp. 178-192 https://doi.org/10.1016/0021-9797(88)90301-3
  5. Chang, H and Biswas, P., 1992, 'In Situ Light Scattering Dissymmetry Measurements of The Evolution of the Aerosol Size Distribution in Flames,' J. Colloid Interface Sci., Vol. 153, pp. 157-165 https://doi.org/10.1016/0021-9797(92)90307-8
  6. Yang, G. and Biswas, P., 1997, 'Study of the Sintering of Nanosized Titania Agglomerates in Flames Using In Situ Light Scattering Measurements,' Aerosol Sci. Technol., Vol. 27, pp. 507-521 https://doi.org/10.1080/02786829708965491
  7. Erhman, S. H., Friedlander, S. K. and Zachariah, M. R., 1998, 'Characteristics of $SiO_2 / TiO_2$ Nanocomposite Particle Formed in a Premixed Flat Flame,' J. Aerosol Sci., Vol. 29, pp. 687-706 https://doi.org/10.1016/S0021-8502(97)00454-0
  8. Windeler, R. S., Lehtinen, K. E. J. and Friedlander, S. K., 1997, 'Production of Nanometer-Sized Metal Oxide Particles by Gas Reaction in a Free Jet. II: Particle Size and Neck Formation-Comparison with Theory,' Aerosol Sci. Technol., Vol. 27, pp. 191-205
  9. Pratsinis, S.E., 1998, 'Flame Aerosol Synthesis of Ceramic Powders,' Prog. Engery Combust. Sci, Vol. 24, pp. 197-219 https://doi.org/10.1016/S0360-1285(97)00028-2
  10. 조재걸, 이정훈, 김현우, 최만수, 1999, '광산란과 입자포집올 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정 (I) ;화염온도의 영향', 대한기계학회논문집 B권, 제23호 제9호, pp. 1139-1150
  11. Koch, W. and Friedlander, S. K., 1990, 'The Effect of Particle Coalescence on the Surface Area of a Coagulation Aerosol,' J. Colloid Interface Sci., Vol. 140, pp. 419-422 https://doi.org/10.1016/0021-9797(90)90362-R
  12. Xiong, Y., and Pratsinis, S. E., 1993, 'Formation of Agglomerate Particles by Coagulation and Sintering: Part I. A Two Dimensional Solution of the Population Balance Equation,' J. Aerosol Sci., Vol. 24, pp. 371-378 https://doi.org/10.1016/0021-8502(93)90003-R
  13. Kruis, F. E., Kusters, K. A. and Pratsinis, S. E., 1993, 'A Simple Model for the Evolution of the Characteristics of Aggregate Particles Undergoing Coagulation and Sintering,' Aerosol Sci. Technol., Vol. 19, pp. 514-526 https://doi.org/10.1080/02786829308959656
  14. Okuyama, K., Shimada, T,, Fujimoto, T., Maekawa, T., Nakaso, K. and Seto, T., 1998, 'Effects of Preparation Conditions on the Characteristics of Titanium Dioxide Particles Produced by a CVD Method,' J. Aerosol Sci., Vol. 29, pp. S907-S908 https://doi.org/10.1016/S0021-8502(98)90636-X
  15. Frenkel, J., 1945, 'Viscous Flow of Crystalline Bodies Under the Action of Surface Tension,' J. Phys., Vol. 9, pp. 385-391
  16. Kingery, W. D., 1976, Introduction to Ceramics, Wiley, New York
  17. Ehrman, S.H. 1999, 'Effect of Particle Size on Rate of Coalescence of Silica Nanoparticles,' J. Colloid Interface Sci., Vol. 213, pp. 158-261 https://doi.org/10.1006/jcis.1999.6105
  18. Smooke, M. D. 1982, 'Solution of Burner-Stabilized Premixed Laminar Flames by Boundary Value Methods,' J. Compu. Phys, Vol. 48, pp. 72-105 https://doi.org/10.1016/0021-9991(82)90036-5
  19. Liu, Y. and Rogg, B., 1991, 'Modelling of Thermally Radiating Diffusion Flames with Detailed Chemistry and Transport,' Heat Transfer in Radiating and Combusting Systems (Edited by Carvalho, M. G., Lockwood, F. and Taine, J.), pp. 114-127
  20. Abu-romia, M. M. and Tien, C. L., 1967, 'Appropriate Mean Absorption Coefficient for Infrared Radiation of Gases,' J. Heat Transfer, pp. 321-327
  21. Curtiss, C. F. and Hirschfelder, J. O., 1949, 'Transport Properties of Multicomponent Gas Mixtures,' J. Chem. Phys., Vol. 17, No. 6, pp. 550-555 https://doi.org/10.1063/1.1747319
  22. Tsatsaronis, G., 1978, 'Prediction of Propagating Laminar Flames in Methane, Oxygen, Nitrogen Mixtures,' Combust. Flame, Vol. 33, pp. 217-239 https://doi.org/10.1016/0010-2180(78)90062-7
  23. Powers, D. R., 1978, 'Kinetics of $SiCl_4$ Oxidation,' J. Ante. Ceram. Soc, Vol 61, pp. 295 -297 https://doi.org/10.1111/j.1151-2916.1978.tb09312.x
  24. Kochubei, V.F., 1997, 'Kinetics of the Gas-Phase Hydrolysis of Silicon Tetrachloride,' Kinetics and Catalysis,' Vol. 38, pp. 212-214
  25. Rogak, S. N. and Flagan, R. C, 1992, 'Coagulation of Aerosol Agglomerates in the Transition Regime,' J. Colloid Interface Sci., Vol. 151, pp. 203-224 https://doi.org/10.1016/0021-9797(92)90252-H
  26. 정재인, 황준영, 이방원, 최만수, 정석호, 1999, '대향류 확산 화염 중에서 비구형 입자 성장에 관한 해석', 대한기계학회논문집 B권, 제23권, 제8호, pp. 997-1009
  27. Allendorf, M. D., Bautista, J. R. and Potkay, E. 1989, 'Temperature Measurements in a Vapor Axial Deposition Flame by Spontaneous Raman Spectroscopy,' J. Appl. Phys., Vol. 66, pp. 5046-5051 https://doi.org/10.1063/1.343778