• 제목/요약/키워드: Aerosol Particle

검색결과 665건 처리시간 0.026초

포항 지역 대기에서 측정된 에어로졸 입자분포 특성 연구 (A Characteristic Study of the Aerosol Size Distribution in Pohang Province)

  • 서문혁;장혁상
    • 한국입자에어로졸학회지
    • /
    • 제8권4호
    • /
    • pp.151-160
    • /
    • 2012
  • Health effects caused by the ultrafine particles in ambient air are great concern to the public health, and the strict measuring and monitoring of the ambient aerosol are required. In this work, the characteristics of the aerosol size distribution in Pohang province are studied. Optical particle counters (Grimm APS 1108 and 1109) were used to measure the aerosol size distribution in the area. Locations near the national monitoring site located in the industrial and the residence area were selected for the measuring sites of this study, and the locations in border area between the industry and the residence were selected for the reference of the comparison. In the industry site, it is found that the concentration of aerosol particles near the size of 5 ${\mu}m$ appear characteristically and the fluctuations in concentration with respect to time are minimal. The mass concentration of the aerosol above 10 ${\mu}m$ in diameter in the industry area was found to fluctuate significantly. The mass portion of $PM_{10}$ and PM2.5 to TSP in the residence area were 83% and 51% respectively. In the industrial regional, it was found that the mass portion of PM10 and $PM_{2.5}$ to TSP were 76% and 35% respectively. In the boundary area the mass portion of $PM_{10}$ and $PM_{2.5}$ to TSP were 78% and 54% respectively.

마스크 필터의 효율 최적화 및 호흡 저항 감소에 관한 연구 (A Study on Optimization of Mask Filter and Reduction in Respiratory Resistance)

  • 권세현;홍자영;정상빈;허기준;이병욱
    • 한국입자에어로졸학회지
    • /
    • 제12권3호
    • /
    • pp.103-107
    • /
    • 2016
  • We conducted experiments on mask filters. We measured filtering efficiencies of several new mask filters which were manufactured by disassembling and reassembling of one type of mask filter. New filter (A+C: combination of the first layer and the third layer of the tested mask filter) showed the highest efficiency (97.7%) with the respiratory resistance of 98 pa.

부산 도심지에서 측정된 에어로졸 농도의 물리적 특성 (Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan)

  • 김연종;김철희
    • 한국환경과학회지
    • /
    • 제19권3호
    • /
    • pp.331-342
    • /
    • 2010
  • Aerosol physical properties have been measured at Pusan National University by using the 16-channel LPC(Laser Particle Counter), and particle characteristics have been examined for the period from Aug. 4 2007 to Dec. 30, 2008. Annual total average, seasonal average, and other averages of the meteorologically classified four categories such as Asian dust, precipitation, foggy, and clear days are respectively described here. Both annually and seasonally averaged number concentration show three peaks at the particle diameter of 0.3, 1.3, and $4{\mu}m$, respectively. However, the first peak for summer season tends to be shifted toward smaller size than other seasons, implying the strong fine particle generation. Meteorological condition shows strong contrast in aerosol concentrations. In Asian dust case, relatively lower number concentrations of fine particles (i.e., smaller than $0.5{\mu}m$) were predominant, while higher concentrations of coarse particles were found particularly for the size bigger than $0.5{\mu}m$. In precipitation day, number concentrations were decreased by approximately 30% due to the removal process of precipitation. Foggy day shows significantly higher concentrations for fine particles, implying the importance of the aerosol condensation process of micro-fine-particle growing to fine-particle. Finally the regressed particle size distribution function was fitted optimally with two log-normal distribution, and discussed the similarities and differences among four categorized cases of the Asian dust, precipitation, foggy, and clear days.

입자 균등성 확보를 위한 시험 챔버의 유동 시뮬레이션 및 이를 이용한 기상 부유균 저감 특성의 실험적 연구 (Flow Simulation of Chamber System to Obtain Particle Uniformity and Study on Bio-aerosol Reduction Test)

  • 박대훈;현준호;황정호
    • 한국입자에어로졸학회지
    • /
    • 제10권2호
    • /
    • pp.83-91
    • /
    • 2014
  • Since airborne bacteria have been known to aggravate indoor air quality, studies on reducing bacteria particles increase recently. In this study, a chamber(0.8m x 0.8m x 1.56m) system was built in order to simulate real conditions for reducing airborne bacteria, and evaluated by a simple aerosol reduction test. A method utilizing CFD(Computational Fluid Dynamics) simulation was used to detect the horizontal cross-sectional area which represents particle distribution in the chamber. Then an air-cleaner with HEPA filter and Carbon Fiber Ionizer was located on that area for aerosol reduction test. The CFD result found the area was located at 0.2m height from the bottom of the chamber, and the test showed aerosol reduction efficiencies using measurements of number concentration and CFU(colony forming unit) per each case. At the measurement of number concentration, the reduction efficiency of air-cleaner with filter and ionizer(Case 3) was about 90% after 4 minutes from the stop of the bacteria injection, and that with only filter(Case 2) was about 90% after 8 minutes from the beginning. Lastly, that without filter and ionizer(Case 1) was about 30% after 10 minutes. At the measurement of CFU, it shows similar results but it is related to viability of bio-aerosol.

공정 중 발생 오염입자 실시간 모니터링을 위한 에어로졸-레이저 유도 플라즈마 분광분석 시스템 개발 (Development of Aerosol-LIBS (Laser Induced Breakdown Spectroscopy) for Real-time Monitoring of Process-induced Particles)

  • 김기백;김경태;맹현옥;이해범;박기홍
    • 한국입자에어로졸학회지
    • /
    • 제12권3호
    • /
    • pp.57-63
    • /
    • 2016
  • The laser-induced breakdown spectroscopy (LIBS) has been used for rapid detection of elemental compositions of various materials in multi-media (solid, liquid, gas, and aerosols). In this study, the aerosol-LIBS has been developed for real-time monitoring of process-induced particles produced during the semiconductor manufacturing. The developed aerosol-LIBS mainly consists of laser, optics, spectrometer, and aerosol chamber. A new aerosol chamber was constructed for the aerosol-LIBS to be applied for various semiconductor manufacturing process, including exhaust tubes, and low pressure and high temperature chamber. The aerosol-LIBS was evaluated by using laboratory generated aerosols for detection of various elements. As a result, P, Fe, Mg, Cu, Co, Ni, Ca, Na, and K emission lines were successfully detected by the aerosol-LIBS. Further evaluation of the aerosol-LIBS is being conducted.

TiO2 제조 실험실에서 나노입자의 배경농도 특징 (Characteristics of Background Nanoparticle Concentration in a TiO2 Manufacturing Laboratory)

  • 박승호;정재희;이승복;배귀남;지현석;조소혜
    • 한국입자에어로졸학회지
    • /
    • 제7권4호
    • /
    • pp.113-121
    • /
    • 2011
  • The aerosol nanoparticles are suspected to be exposed to workers in nanomaterial manufacturing facilities. However, the exposure assessment method has not been established. One of important issues is to characterize background level of nanoparticles in workplaces. In this study, intensive aerosol measurements were made at a $TiO_2$ manufacturing laboratory for five consecutive days in May of 2010. The $TiO_2$ nanoparticles were manufactured by the thermal-condensation process in a heated tube furnace. The particle number size distribution was measured using a scanning mobility particle sizer every 5 min, in order to detect particles ranging from 14.5 to 664 nm in diameter. Total particle number concentration shows a severe diurnal variation irrespective of manufacturing process, which was governed by nanoparticles smaller than 50 nm in diameter. During the background monitoring periods, significant peak concentrations were observed between 2 p.m. and 3 p.m. due to the infiltration of secondary aerosol particles formed by photochemical smog. Although significant increase in nanoparticle concentration was also observed during the manufacturing process twice among three times, these particle peak concentrations were lower than those observed during the background measurement. It is suggested that the investigation of background particle contamination is needed prior to conducting main exposure assessment in nanomaterial manufacturing workplaces or laboratories.

Development of a Real-time Monitoring Device for Measuring Particulate Matter

  • Kim, Dae Seong;Cho, Young Kuk;Yoon, Young Hun
    • 한국입자에어로졸학회지
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, we have developed a real-time monitoring device for measuring $PM_{10/2.5/1}$ of ambient aerosol particles. The real-time PM (Particulate Matter) monitor was based on the light scattering method and had 16 channels in particle size. The laboratory and field tests were carried out to evaluate the performance of the PM monitor developed. Arizona Road Dust particles ranging from diameter of 0.1 to $20{\mu}m$ were generated as test particles in the laboratory test. The field test was carried out at the Seoul Meteorological Observatory. We can obtain the particle size and number concentration (particle size distribution) only from the real-time PM monitor developed. Therefore, the average density of aerosol particles was used to obtain the PM data from the particle size distribution. The $PM_{10/2.5/1}$ results of the PM monitor were compared with the data of the Grimm Dust Monitor (Model 1.108) and a beta ray gauge (Thermo Fisher Scientific). As a result, it was shown that the $PM_{10/2.5/1}$ results obtained by the real-time PM monitor agreed well with the data of the reference devices, and overall, the real-time PM monitor could be used as a PM monitoring device for real-time monitoring of the ambient particles.

저온 플라즈마 공정에서의 나노 미립자 생성 및 성장 (Nanoparticle generation and growth in low temperature plasma process)

  • 김동주;김교선
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.95-109
    • /
    • 2009
  • A low temperature plasma process has been widely used for semiconductor fabrication and can also be applied for the preparation of solar cell, MEMS or NEMS, but they are notorious in the point of particle contamination. The nano-sized particles can be generated in the low temperature plasma process and they can induce several serious defects on the performance and quality of microelectronic devices and also on the cost of final products. For the preparation of high quality thin films of high efficiency by the low temperature plasma process, it is desirable to increase the deposition rate of thin films with reducing the particle contamination in the plasmas. In this paper, we introduced the studies on the generation and growth of nanoparticles in the low temperature plasmas and tried to introduce the recent interesting studies on nanoparticle generation in the plasma reactors.

  • PDF

에어로졸 중화기의 나노 입자 하전 특성 (Nano Particle Charging Characteristics of Aerosol Charge Neutralizers)

  • 지준호;배귀남;황정호
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1489-1497
    • /
    • 2003
  • Aerosol charge neutralizers with various radioactive sources have been used to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. Measurements of highly charged particles are needed in air cleaning devices, e.g. electrostatic precipitator, bag filter with a pre-charger, and electrical cyclone. In this study, the particle charging characteristics of two different aerosol charge neutralizers were experimentally investigated for singly charged monodisperse particles and highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0,5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.2 to 2.5 L/min. The results show that the charge distribution of singly charged monodisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer is well agreed with the Boltzmann equilibrium charge distribution at an air flow rate of 0.3 L/min, However, it deviates from the equilibrium charge distribution when the air flow rates are 0.6, 1,0, and 1,5 L/min, On the other hands, the effect of air flow rate is insignificant for the $^{210}$ Po aerosol charge neutralizer. The non-equilibrium character in charge distribution of highly charged polydisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer greatly depends on the air flow rate, however it is insensitive to the air flow rate for the $^{210}$ Po aerosol charge neutralizer.

Size Measurement of Radioactive Aerosol Particles in Intense Radiation Fields Using Wire Screens and Imaging Plates

  • Oki, Yuichi;Tanaka, Toru;Takamiya, Koichi;Osada, Naoyuki;Nitta, Shinnosuke;Ishi, Yoshihiro;Uesugi, Tomonori;Kuriyama, Yasutoshi;Sakamoto, Masaaki;Ohtsuki, Tsutomu
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.216-221
    • /
    • 2016
  • Background: Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. Materials and Methods: A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of $^{11}C$-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. Results and Discussion: The size distribution for $^{11}C$-bearing aerosol particles was found to be ca. $70{\mu}m$ in geometric mean diameter. The size was similar to that for $^7Be$-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. Conclusion: The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.