• Title/Summary/Keyword: Aeronautical Study

Search Result 1,639, Processing Time 0.032 seconds

A Study on the Influence of Flight Trainees' Stress on Flight Immersion and Abandonment

  • Seung Joon Jeon;Yun Sick Jung;Kyoung Eun Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.191-198
    • /
    • 2022
  • Stress refers to various body reactions that occur when humans are stimulated by environmental conditions. The quality of education and flight skills can suffer if flight trainees are constantly subjected to high stress, even in the case of flight trainees, and as a result, it can harm becoming a pilot. It is therefore the aim of this study to identify stress factors (flight training, career, financial support, relationships with family and teachers) that student pilots face, to determine how these factors affect flight and academic immersion and abandonment, and to improve the quality of flight education.

A Study on the Feasibility of Defect Diagnosis using Principal Component Analysis on Aircraft Vibration Data (항공기 진동 데이터 수집 및 주성분 분석을 통한 결함 진단 가능성 연구)

  • Jeong, Sang-gyu;Seo, Young-jin;Kim, Young-mok;Jun, Byung-kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.767-773
    • /
    • 2018
  • In many cases, modern aircraft are equipped with data acquisition system which checks the structural integrity of the aircraft. The analysis of the vibration data collected with the system is generally performed in dependence on a skilled expert who is familiar with aircraft design. Therefore, it is difficult to provide a representative and objective defect identification standard for general users. In this paper, we shows that it is possible to identify the type of maneuvers and faults by using the Principal Component Analysis(PCA) method in the vast vibration data collected during aircraft operation without using the existing aircraft design analysis. We classified the ROK Army aircraft vibration data for maneuvers and faults types, and applied the PCA to the classified data. Our result shows that it is possible to develop an objective maneuver/fault identification method without design analysis for general users.

A Study on PU Strip Quality Improvement through a Change of Primer-process for SURION Main Rotor Blade (수리온 주로터 블레이드 프라이머 공정변경을 통한 PU Strip 품질 향상에 관한 연구)

  • Lee, Yoon-Woo;Kim, Young-Jin;Seo, Young-Jin;Kim, Min-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.401-415
    • /
    • 2019
  • Purpose: When the SURION Aircraft operated in the fields, cracks are found in PU(polyurethane) Strip on main rotor blade. This study has been conducted to explain PU(polyurethane) Strip crack phenomenon of SURION main rotor blade and to propose useful solution of it by experimental method. Methods: This study considered a lot of factor because the SURION is operated at severe environment. This study investigated the influence of temperature, thermal shock, paint and primer process, PU Strip material, primer material. Results: The results of this study are as follows; The primer process was most excellent influence. The Application of primer having a brittleness caused by a crack of PU Strip. Other factors have influenced on the PU Strip, but they can not be controlled because they are related to the SURION's operating environment. Conclusion: The Quality of PU Strip on SURION main rotor blade was improved through removing the primer process. Finally, the reliability of main rotor blade was guaranteed through improving the quality of PU Strip.

An Exploratory Study on the Speed Limit of Compound Gyroplane(1) : Aerodynamic Analysis of Rotor and Airframe (복합 자이로플레인의 한계 속도에 대한 탐색연구(1) : 로터와 기체의 공력해석)

  • Shin, Byung-joon;Kim, Hak-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.971-977
    • /
    • 2015
  • A numerical analysis for the performance of compound gyroplane in forward flight was performed. TSM(Transient Simulation Method) was used to analyze the performance of autorotating rotor. CFD was conducted for the fuselages to recognize the variation of aerodynamic performance according to flight speed. At given conditions; airspeed, shaft angle and collective pitch, the quasi-static states of autorotation were determined and the variation of rotor performance was observed. Performance analysis results showed that the effect of aerodynamic characteristics in accordance with the shape of fuselage is so important that the streamlined fuselage is essential to fly fast. Forward flight speed limit is dependent on the autorotation performance of rotor.

Active contrl of an ambulane\ce stretcher: Simulation study

  • Sagawa, K.;Inooka, H.;Ino-Oka, E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.100-105
    • /
    • 1994
  • In this paper, we discuss a method for design of an ambulance stretcher which call decrease blood pressure fluctuation caused by ambulance acceleration. Recently, a lot of stretchers which can isolate the vertical vibration to reduce body resonances (4-10 Hz) have been used during ambulance transport. However, we have found that blood pressure of a patient laying in the stretcher fluctuates when the ambulance accelerates or decelerates. Since the enforced change of the blood pressure may deteriorate the patent's condition, a stretcher to cancel head-to-foot acceleration and to decrease the blood pressure variation (BPV) is expected for safe transport. We propose a method to design a stretcher which is tilted according to an adequate angle to cancel head-to-foot acceleration by gravity when the ambulance accelerates or decelerates. A control method of the stretcher is constructed by means of simulation analysis using acceleration data measured during ambulance transport. It is confirmed that the active controlled stretcher proposed has good performance for the BPV reduction.

  • PDF

Prediction of stiffness degradation in composite laminate with transverse cracking and delamination under hygrothermal conditions-desorption case

  • B. Boukert;M. Khodjet-Kesba;A. Benkhedda;E.A. Adda Bedia
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.1-21
    • /
    • 2024
  • The stiffness reduction of cross-ply composite laminates featuring a transverse cracking and delamination within the mid-layer is predicted through utilization of a modified shear-lag model, incorporating a stress perturbation function. Good agreement is obtained by comparing the prediction models and experimental data. The material characteristics of the composite are affected by fluctuations in temperature and transient moisture concentration distribution in desorption case, based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution induces a stiffness reduction. The obtained results demonstrate the stiffness degradation dependence on factors such as cracks density, thickness ratio and environmental conditions. The present study underscores the significance of comprehending the degradation of material properties in the failure progression of laminates, particularly in instances of extensive delamination growth.