• Title/Summary/Keyword: Aerodynamic stability

Search Result 321, Processing Time 0.019 seconds

Positional Stability Analysis of Trailing Aircraft in Formation Flight (편대비행에서 후방 항공기의 위치 안전성 분석)

  • Cho, Hwan Kee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.19-24
    • /
    • 2016
  • Positional stability analysis based on aerodynamic forces and induced moments of formation flight using two small aircraft models is presented. The aerodynamic force and moments of the trailing aircraft are analyzed in the aspect of flight stability. The induced moments with the change of local flow direction by wing-tip vortex from the leading aircraft can affect the flight positional stability of aircraft in closed formation flight. Aerodynamic forces and moments of trailing aircraft model are measured by 6-component internal balance at the 49 locations with vertical and lateral space between two aircraft models. Results are shown that the positional stability of trailing aircraft in formation flight can be analyzed by positional stability derivatives with vertical and lateral space. It is concluded that flying positions can be important factors for aircraft position stability due to induced aerodynamic force and moments with vertical and lateral spacing by the variation of flow pattern from the leading aircraft in formation flight.

Investigation on wind stability of three-tower cable-stayed-suspension hybrid bridges under skew wind

  • Xin-Jun Zhang;Li Bowen;Nan Zhou
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.427-443
    • /
    • 2024
  • By using a computational program of three-dimensional aerostatic and aerodynamic stability analysis of long-span bridges under skew wind, the dynamic characteristics and structural stability(including the aerostatic and aerodynamic stability) of a three-tower cable-stayed-suspension hybrid bridge with main span of 1 400 meters are investigated numerically under skew wind, and the skew wind and aerostatic effects on the aerostatic and aerodynamic stability of three-tower cable-stayedsuspension hybrid bridge are ascertained. The results show that the three-tower cable-stayed-suspension hybrid bridge is a longspan structure with greater flexibility, and it is more susceptible to the wind action. The aerostatic instability of three-tower cable-stayed-suspension hybrid bridges is characterized by the coupling of vertical bending and torsion of the girder, and the skew wind does not affect the aerostatic instability mode. The skew wind has positive or negative effects on the aerostatic stability of the bridge, the influence is between -5.38% and 4.64%, and in most cases, it reduces the aerostatic stability of the bridge. With the increase of wind yaw angle, the critical wind speed of aerostatic instability does not vary as the cosine rule as proposed by the skew wind decomposition method, the skew wind decomposition method may overestimate the aerostatic stability, and the maximum overestimation is 16.7%. The flutter critical wind speed fluctuates with the increase of wind yaw angle, and it may reach to the minimum value under the skew wind. The skew wind has limited effect on the aerodynamic stability of three-tower cable-stayed-suspension hybrid bridge, however the aerostatic effect significantly reduces the aerodynamic stability of the bridge under skew wind, the reduction is between 3.66% and 21.86%, with an overall average drop of 11.59%. The combined effect of skew and static winds further reduces the critical flutter wind speed, the decrease is between 7.91% and 19.37%, with an overall average decrease of 11.85%. Therefore, the effects of skew and static winds must be comprehensively considered in the aerostatic and aerodynamic stability analysis of three-tower cable-stayed-suspension hybrid bridges.

On the mechanism of vertical stabilizer plates for improving aerodynamic stability of bridges

  • Chen, Airong;Zhou, Zhiyong;Xiang, Haifan
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.59-74
    • /
    • 2006
  • Vertical stabilizer plates have been found to be an effective aerodynamic measure to improve the aerodynamic stability of bridges either with an open cross section or with a streamlined box cross section in wind tunnel testings and have been adopted in some long span bridges. By taking an open deck II-shaped section and a closed box section as examples, the mechanism of vertical stabilizer plates for improving aerodynamic stability are investigated by using numerical simulation based on Random Vortex Method. It is found that vertical stabilizer plates can increase the amplitude of the heaving motion, and decrease that of the rotational motion of the bridge decks.

Investigation on the wind-induced instability of long-span suspension bridges with 3D cable system

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • The cable system is generally considered to be a structural solution to increase the spanning capacity of suspension bridges. In this work, based on the Runyang Bridge over the Yangtze River, three case suspension bridges with different 3D cable systems are designed, structural dynamic characteristics, the aerostatic and aerodynamic stability are investigated numerically by 3D nonlinear aerostatic and aerodynamic analysis, and the cable system favorable to improve the wind-induced instability of long-span suspension bridges is also proposed. The results show that as compared to the example bridge with parallel cable system, the suspension bridge with inward-inclined cable system has greater lateral bending and tensional frequencies, and also better aerodynamic stability; as for the suspension bridge with outward-inclined cable system, it has less lateral bending and tensional frequencies, and but better aerostatic stability; however the suspension bridge is more prone to aerodynamic instability, and therefore considering the whole wind-induced instability, the parallel and inward-inclined cable systems are both favorable for long-span suspension bridges.

Dynamic Instability of Rocket-Propelled Flying Bodies

  • Sugiyama, Yoshihiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.1-5
    • /
    • 2003
  • This paper deals with dynamic instability of slender rocket-propelled flying bodies, such as launch vehicle and advances missiles subjected to aerodynamic loads and an end rocket thrust. A flying body is simplified into a uniform free-free beam subjected to an end follower thrust. Two types of aerodynamic loads are assumed in the stability analysis. Firstly, it is assumed that two concentrated aerodynamic loads act on the flying body at its nose and tail. Secondly, to take account of effect of unsteady flow due to motion of a flexible flying body, aerodynamic load is estimated by the slender body approximation. Extended Hamilton's principle is applied to the considered beam for deriving the equation of motion. Application of FEM yields standardeigen-value problem. Dynamic stability of the beam is determined by the sign of the real part of the complex eigen-values. If aerodynamic loads are concentrated loads that act on the flying body at its nose and tail, the flutter thrust decreases by about 10% in comparison with the flutter thrust of free-free beam subjected only to an end follower thrust. If aerodynamic loads are distributed along the longitudinal axis of the flying body, the flutter thrust decreases by about 70% in comparison with the flutter thrust of free-free beam under an end follower thrust. It is found that the flutter thrust is reduced considerably if the aerodynamic loads are taken into account in addition to an end rocket thrust in the stability analysis of slender rocket-propelled flying bodies.

  • PDF

Windproof ability of aerodynamic measures to improve the wind environment above a truss girder

  • Wang, Zewen;Tang, Haojun;Li, Yongle;Guo, Junjie;Liu, Zhanhui
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.423-437
    • /
    • 2021
  • Aerodynamic measures have been widely used for improving the flutter stability of long-span bridges, and this paper focuses their windproof ability to improve the wind environment for vehicles. The whole wind environment around a long-span bridge located in high altitude mountainous areas is first studied. The local wind environment above the deck is then focused by two perspectives. One is the windproof effects of aerodynamic measures, and the other is whether the bridge with aerodynamic measures meets the requirement of flutter stability after installing extra wind barriers in the future. Furthermore, the effects of different wind barriers are analyzed. Results show that aerodynamic measures exert potential effects on the local wind environment, as the vertical stabilizer obviously reduces wind velocities behind it while the closed central slot has limited effects. The suggested aerodynamic measures have the ability to offset the adverse effect of the wind barrier on the flutter stability of the bridge. Behind the wind barrier, wind velocities decrease in general, but in some places incoming flow has to pass through the deck with higher velocities due to the increase in blockage ratio. Further comparison shows that the wind barrier with four bars is optimal.

Wind tunnel test research on aerodynamic means of the ZG Bridge

  • He, Xiangdong;Xi, Shaozhong
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.119-125
    • /
    • 1999
  • The ZG Bridge(preliminary design), with unfavorable aerodynamic stability characteristics, is a truss-stiffened suspension bridge, its critical wind speed of flutter instability is much lower than that of code requirement, In the present paper, based on both aerostatic and aeroelastic section model wind tunnel test, not only effects of some aerodynamic means on aerodynamic stability of its main girder are investigated, but also such effective aerodynamic means of it as flap and plate-like center stabilizer are concluded.

Aerodynamic Design of the KARI Mid-sized Aerostat

  • Huh, Lynn;Park, Young-Min;Chang, Byeong-Hee;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 2006
  • Aerodynamic shape design of the Mid-sized Aerostat was performed with computational fluid dynamics. Design procedure included determination of hull volume and length, hull shape, tailfin configuration with anhedral and location, tailfin section. For aerodynamic analysis, three dimensional Navier-Stokes equations were applied with Spalart-Allmaras turbulence model. During design procedure, static moment derivatives were mainly considered for the stability of aerostat and structural limitations were also considered for practical application of the designed shape. Aerodynamic analysis of the designed aerostat was carried out and aerodynamic characteristics were compared with those of the TCOM 71m aerostat, one of the most successful commercial aerostats. It was found that the designed KARI Mid-sized Aerostat had better stability characteristics compared to the TCOM 71m aerostat.

Study of structural parameters on the aerodynamic stability of three-tower suspension bridge

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.471-485
    • /
    • 2010
  • In comparison with the common two-tower suspension bridge, due to the lack of effective longitudinal restraint of the center tower, the three-tower suspension bridge becomes a structural system with greater flexibility, and more susceptible to the wind action. By taking a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River with two main spans of 1080 m as example, effects of structural parameters including the cable sag to span ratio, the side to main span ratio, the deck's dead load, the deck's bearing system, longitudinal structural form of the center tower and the cable system on the aerodynamic stability of the bridge are investigated numerically by 3D nonlinear aerodynamic stability analysis, the favorable structural system of three-tower suspension bridge with good wind stability is discussed. The results show that good aerodynamic stability can be obtained for three-tower suspension bridge as the cable sag to span ratio is assumed ranging from 1/10 to 1/11, the central buckle are provided between main cables and the deck at midpoint of main spans, the longitudinal bending stiffness of the center tower is strengthened, and the spatial cable system or double cable system is employed.

Practical countermeasures for the aerodynamic performance of long-span cable-stayed bridges with open decks

  • Zhou, Rui;Yang, Yongxin;Ge, Yaojun;Mendis, Priyan;Mohotti, Damith
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.223-239
    • /
    • 2015
  • Open decks are a widely used deck configuration in long-span cable-stayed bridges; however, incorporating aerodynamic countermeasures are advisable to achieve better aerodynamic performance than a bluff body deck alone. A sectional model of an open deck cable-stayed bridge with a main span of 400 m was selected to conduct a series of wind tunnel tests. The influences of five practical aerodynamic countermeasures on flutter and vortex-induced vibration (VIV) performance were investigated and are presented in this paper. The results show that an aerodynamic shape selection procedure can be used to evaluate the flutter stability of decks with respect to different terrain types and structural parameters. In addition, the VIV performance of $\prod$-shaped girders for driving comfortableness and safety requirements were evaluated. Among these aerodynamic countermeasures, apron boards and wind fairings can improve the aerodynamic performance to some extent, while horizontal guide plates with 5% of the total deck width show a significant influence on the flutter stability and VIV. A wind fairing with an angle of $55^{\circ}C$ showed the best overall control effect but led to more lock-in regions of VIV. The combination of vertical stabilisers and airflow-depressing boards was found to be superior to other countermeasures and effectively boosted aerodynamic performance; specifically, vertical stabilisers significantly contribute to improving flutter stability and suppressing vertical VIV, while airflow-depressing boards are helpful in reducing torsional VIV.