• Title/Summary/Keyword: Aerodynamic redesign

Search Result 9, Processing Time 0.021 seconds

Numerical Investigation of Geometrical Design Variables for Improvement of Aerodynamic Performance of Supersonic Impulse Turbine (초음속 충동형 터빈익형의 공력성능 향상을 위한 기하학적 설계변수 수치연구)

  • Lee,Eun-Seok;Kim,Jin-Han;Jo,Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.99-106
    • /
    • 2003
  • Geometrical design variables are numerically investigated to improve aerodynamic performance of the supersonic impulse turbine of a turbopump in a liquid rocket engine. Aerodynamic redesign was performed for maximization of the blade power. Four design variables considered are blade angle, blade thickness and radii of upper and lower arc blade with appropriate constraints. A fast Navier-Stokes solver was developed and Chien's k-$\varepsilon$ turbulence modelling was used for turbulence closure. In initial shape, a flow separation was found in the middle of blade chord. However, it disappeared in final shape via its geometrical design variable change. About 3.2 percent of blade power was increased from this research.

Aerodynamic Shape Optimization of the Impulse Turbine using Numerical Analysis (수치해석을 이용한 충동형 터빈의 공력형상 최적화)

  • Lee E. S.;Seol W. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.191-196
    • /
    • 2005
  • For the improvement of aerodynamic performance of the turbine blade in a turbopump for the liquid rocket engine, the optimization of turbine profile shape has been studied. The turbine in a turbopump in this study is a partial admission of impulse type, which has twelve nozzles and supersonic inflow. Due to the separated nozzles and supersonic expansion, the flow field becomes complicates and shows oblique shocks and flow separation. To increase the blade power, redesign of the blade shape using CFD and optimization method was attempted. The turbine cascade shape was represented by four design parameters. For optimization, genetic algorithm based upon non-gradient search has been selected as a optimizer. As a result, the final blade has about 4 percent more blade power than the initial shape.

  • PDF

AERODYNAMIC SHAPE OPTIMIZATION OF THE SUPERSONIC IMPULSE TURBINE USING CFD AND GENETIC ALGORITHM (CFD와 유전알고리즘을 이용한 초음속 충동형 터빈의 공력형상 최적화)

  • Lee E.S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.54-59
    • /
    • 2005
  • For the improvement of aerodynamic performance of the turbine blade in a turbopump for the liquid rocket engine, the optimization of turbine profile shape has been studied. The turbine in a turbopump in this study is a partial admission of impulse type, which has twelve nozzles and supersonic inflow. Due to the separated nozzles and supersonic expansion, the flow field becomes complicate and shows oblique shocks and flow separation. To increase the blade power, redesign ol the blade shape using CFD and optimization methods was attempted. The turbine cascade shape was represented by four design parameters. For optimization, a genetic algorithm based upon non-gradient search hue been selected as an optimizer. As a result, the final blade has about 4 percent more blade power than the initial shape.

A STUDY ABOUT FLOW CONTROL CHARACTERISTICS USING A SYNTHETIC JET (Synthetic Jet을 이용한 유동제어 특성연구)

  • Hong, Woo-Ram;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Yu-Shin;Kim, Chong-Am
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • To develop an aerodynamic performance, two groups of studies have been achieved widely. One is about the geometric design of vehicles and the other is about aerodynamic devices. Geometric design is a credible and stable method. However, it is not flexible and each part is related interactively. Therefore, if one part of geometry is modified, the other part will be required to redesign. On the other hand, the flow control by aerodynamic devices is flexible and modulized method. Even though it needs some energy, a relatively small amount of input makes more advanced aerodynamic performance. Synthetic jet is one of the method in the second group. The device repeats suctions and blowing motions in constant frequency. According to the performance, the adjacent flow to flight surface are served momentum. This mechanism can reduce the aerodynamic loss of boundary layer and separated flow. A synthetic jet actuator has several parameters, which influences the flow control. This study focuses on the parameter effects of synthetic jet - orifice geometry, frequency, jet speed and etc.

Simulation for Development and Validation of Drone for Inspection Inside Boilers in High Temperature Thermal Power Plants Using AirSim (AirSim을 이용한 화력발전소 고온 환경의 보일러 내부 점검용 드론 개발 및 검증을 위한 시뮬레이션)

  • Park, Sang-Kyu;Jeong, Jin-Seok;Shi, Ha-Young;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.53-61
    • /
    • 2021
  • This paper is a preliminary study for the development of a drone for inspection inside a boiler in a thermal power plant, which is a high-temperature environment, and validated whether the drone can fly normally through a high-temperature environment simulation using AirSim. In a high-temperature flight environment, the aerodynamic characteristics of the air density and viscosity are different from room temperature, and the flight performance of the drone is also changed accordingly. Therefore, in order to confirm the change of the aerodynamic characteristics of the propeller according to the temperature change, the propeller analysis and thrust test through JBLADE, and the operation characteristics prediction through the electric propulsion system performance prediction model were performed. In addition, the analysis and performance prediction results were applied to AirSim for simulation, and the aircraft redesigned through the analysis of the results. As a result of the redesign, it was confirmed that about 65% of the maximum power used before the redesign was reduced to 52% to obtain the necessary thrust when hovering in an environment of 80℃.

Design of Low Noise Airfoil for Use on Small Wind Turbines (소형 풍력발전기 소음 저감을 위한 익형 설계 연구)

  • Kim, Tae-Hyung;Lee, Seung-Min;Kim, Ho-Geon;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Design of Two Stage Axial Compressor of a Turbo Shaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.183-190
    • /
    • 1998
  • This paper introduces the part of efforts to develop a derivative type turbo-shaft engine from an existing baseline engine for multi-purpose helicopters targeting at 4000kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power to 840hp from 720hp with minimum modification, two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, two stage axial compressors were designed to have the flow rate of 3.04 kg/s, the pressure ratio of 2.01 and the adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Modification of a Two Stage Axial Compressor of a Turboshaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.88-95
    • /
    • 1999
  • This paper introduces the part of efforts to develop a derivative type turboshaft engine from an existing baseline engine for multi-purpose helicopters aiming at 4000 kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power from 720 hp to 840hp with minimum modification, a two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, a two stage axial compressor was designed to facilitate a flow rate of 3.04 kg/s, a pressure ratio of 2.01 and an adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Store Separation Analysis of a Fighter Aircraft's External Fuel Tank

  • Cho, Hwan-Kee;Kang, Chi-Hang;Jang, Young-Il;Lee, Sang-Hyun;Kim, Kwang-Yeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.345-350
    • /
    • 2010
  • The repetitive vibrating action of an aerodynamic load causes an external fuel tank's horizontal fin to experience a shorter life cycle than its originally predicted one. Store separation analysis is needed to redesign the fin of an external fuel tank. In this research, free-drop tests were conducted using 15% scaled models in a subsonic wind tunnel in order to analyze the store separation characteristics of an external fuel tank. The store separation trajectory based on grid tests was also obtained to verify the results of the free-drop tests. The results acquired from the free-drop tests correlated well with the grid tests in regards to the trajectories and behavior of the stores separated from the aircraft. This agreement was especially noted in the early stages of the store separation.