• Title/Summary/Keyword: Aerodynamic force

Search Result 425, Processing Time 0.023 seconds

Aerodynamic Analysis of a Pantograph of a High Speed Train With a Pantograph Cover (커버 형상에 따른 고속전철 판토그래프의 공력특성 해석)

  • Kang, Hyung-Min;Kim, Cheol-Wan;Cho, Tae-Hwan;Kim, Dong-Ha;Yun, Su-Hwan;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.81-87
    • /
    • 2011
  • The aerodynamic features of a pantograph of a high speed train are analyzed according to shapes of pantograph covers. For this purpose, two types of pantograph covers were selected: a wedge type cover and a cone type cover. Then, the change of the aerodynamic forces of the pantograph affected by each type of the pantograph cover was computed. These results were compared with the original lift force of the pantograph. From the results, the cone type cover changes the flow direction from side to side compared with the wedge type cover. Consequently, it is confirmed that the effect of the wedge type cover on the lift force of pantograph is smaller than that of the cone type cover.

  • PDF

How Birds and Insects Fly (곤충과 새의 비행방법)

  • Hong, Young-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.130-143
    • /
    • 2007
  • Using steady state aerodynamic theories, it has been claimed that insects and birds cannot fly. To make matters worse, insects and birds fly at low Reynolds numbers. Therefore, a recurring theme in the literature is the importance of understanding unsteady aerodynamic effect and how the vortices behave when they separate from the moving surface that created them. In flapping flight, birds and insects can modify wing beat amplitude, stroke angle, wing planform area, angle of attack, and to a lesser extent flapping frequency to optimize the generation of lift force. Some birds are thought to employ two different gaits(a vortex ring gait and a continuous vortex gait) and unsteady aerodynamic effect(Clap and fling, Delayed stall, Wake capture and Rotational Circulation) in flapping flight. Leading edge vortices may produce an increase in lift. The trailing edge vortex could be an important component in gliding flight. Tip vortices in hovering support the body weight of the hummingbirds. Thus, this study investigated how insects and birds generate lift at low Reynolds numbers. This research is written to further that as yet incomplete understanding.

Wind-induced response and loads for the Confederation Bridge -Part II: derivation of wind loads

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.393-409
    • /
    • 2013
  • This paper uses ten years of on-site monitoring data for the Confederation Bridge to derive wind loads and investigate whether the bridge has experienced its design wind force effects since its completion in 1997. The load effects derived using loads from the on-site monitoring data are compared to the load effects derived using loads from the 1994 and 2009 wind tunnel aerodynamic model tests. The research shows, for the first time, that the aerodynamic model-based methodology originally developed in 1994 is a very accurate method for deriving wind loads for structural design. The research also confirms that the bridge has not experienced its specified (i.e., unfactored) wind force effects since it was opened to traffic in 1997, even during the most severe event that has occurred during this period.

Analysis of the Effects of SD Plasma on Aerodynamic Drag Reduction of a High-speed Train

  • Lee, Hyung-Woo;Kwon, Hyeok-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1712-1718
    • /
    • 2014
  • Experimental analysis according to the plasma actuator design variables was performed in order to verify the effects of sliding discharge plasma on aerodynamic drag reduction of a high-speed train. For the study, sliding discharge plasma actuator and high-frequency, high-voltage power supply were developed and experimented to figure out the best design variables for highest ionic wind velocity which could reduce the drag force. And then, 5% reduced-scale model of a high-speed train was built for wind tunnel test to verify it. From the results, it was confirmed that sliding discharge plasma had contribution to reduce the drag force and it had the potential to be applied to real-scale trains.

Aerodynamic Analysis of Lateral Jet Controlled Missile Using CfDS Code (CFDS 코드를 이용한 측추력 유도탄 공력해석)

  • Kim, Jae-Gwan;Lee, Jeong-Il;Kim, Chong-Am;Hong, Seung-Gyu;Lee, Kwang-Seop;Ahn, Chang-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.143-151
    • /
    • 2006
  • This paper investigates effects of reaction control jet on the aerodynamic performance of generic interceptor missile operating at supersonic flight condition. Parallelized CFDS code is used as a viscous flow solver. The generic interceptor missile configuration composed of a long and slender body and fixed tail fins. The behavior of normal force, axial force and pitching moment characteristics at altitude conditions corresponding to 10 km is studied according to the given control jet conditions, different angle of attacks based on the analysis of aerodynamic characteristics.

Development of an Unsteady Aerodynamic Analysis Module for Rotor Comprehensive Analysis Code

  • Lee, Joon-Bae;Yee, Kwan-Jung;Oh, Se-Jong;Kim, Do-Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.23-33
    • /
    • 2009
  • The inherent aeromechanical complexity of a rotor system necessitated the comprehensive analysis code for helicopter rotor system. In the present study, an aerodynamic analysis module has been developed as a part of rotorcraft comprehensive program. Aerodynamic analysis module is largely classified into airload calculation routine and inflow analysis routine. For airload calculation, quasi-steady analysis model is employed based on the blade element method with the correction of unsteady aerodynamic effects. In order to take unsteady effects - body motion effects and dynamic stall - into account, aerodynamic coefficients are corrected by considering Leishman-Beddoes's unsteady model. Various inflow models and vortex wake models are implemented in the aerodynamic module to consider wake induced inflow. Specifically, linear inflow, dynamic inflow, prescribed wake and free wake model are integrated into the present module. The aerodynamic characteristics of each method are compared and validated against available experimental data such as Elliot's induced inflow distribution and sectional normal force coefficients of AH-1G. In order to validate unsteady aerodynamic model, 2-D unsteady model for NACA0012 airfoil is validated against aerodynamic coefficients of McAlister's experimental data.

INVESTIGATION FOR THE AERODYNAMIC CHARACTERISTICS OF HIGH SPEED TRAIN PANTOGRAPH WITH COVER (커버 형상을 고려한 고속전철 팬터그래프 공력특성의 수치해석적 연구)

  • Kang, H.M.;Kim, C.W.;Cho, T.H.;Kim, D.H.;Yoon, S.H.;Kwon, H.B.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.18-24
    • /
    • 2012
  • The aerodynamic performance of the pantograph on a high speed train was compared for different pantograph covers which are designed to block the aero-acoustic noise from the pantograph. For the study, two types of cover are designed: wedge and cone types. The lift force of pantograph with cover was compared with the force of pantograph only. The comparison clarified that the cone type cover increases the sideslip angle of the flow and decreases the lift force considerably. However, the wedge type cover changes the flow direction upward and increases the lift force of the pan head. This increment of lift force compensates the decrement of lift force caused by the blocking of the flow into the pantograph lower frame due to cover. Therefore, in case of the wedge type cover, the overall lift force changes slightly compared with the cone type cover.

The effect of Local Vibration Modes on the Flutter (국부진동모드가 플러터해석에 미치는 영향연구)

  • Shin, Young-Sug;Kim, Heon-Ju;Kim, Seong-Tae;Kim, Jae-Young;Hwang, Chul-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.919-926
    • /
    • 2011
  • The fin of high speed air vehicle is composed of skins and strong skeletons. In the flutter analysis, the eigenmodes of a fin are used for evaluating the unsteady aerodynamic force and the modal approach is applied for solving the flutter equation in both time and frequency domain. Therefore, the proper eigenmodes used for a modal flutter analysis should be chosen. For the appropriate choice of eigenmodes, when there exist local modes of a skin in the high modes, the effects of those modes on the unsteady aerodynamic force and flutter characteristics are anlalyzed.

Numerical studies of the suppression of vortex-induced vibrations of twin box girders by central grids

  • Li, Zhiguo;Zhou, Qiang;Liao, Haili;Ma, Cunming
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.305-315
    • /
    • 2018
  • A numerical study based on a delayed detached eddy simulation (DDES) is conducted to investigate the aerodynamic mechanism behind the suppression of vortex-induced vibrations (VIVs) of twin box girders by central grids, which have an inhibition effect on VIVs, as evidenced by the results of section model wind tunnel tests. The mean aerodynamic force coefficients with different attack angles are compared with experimental results to validate the numerical method. Next, the flow structures around the deck and the aerodynamic forces on the deck are analyzed to enhance the understanding of the occurrence of VIVs and the suppression of VIVs by the application of central grids. The results show that shear layers are separated from the upper railings and lower overhaul track of the upstream girder and induce large-scale vortices in the gap that cause periodical lift forces of large amplitude acting on the downstream girder, resulting in VIVs of the bridge deck. However, the VIVs are apparently suppressed by the central grids because the vortices in the central gap are reduced into smaller vortices and become weaker, causing slightly fluctuating lift forces on the deck. In addition, the mean lift force on the deck is mainly caused by the upstream girder, whereas the fluctuating lift force is mainly caused by the downstream girder.

Aerodynamic forces on fixed and rotating plates

  • Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.;Richards, P.J.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.127-144
    • /
    • 2010
  • Pressure measurements on static and autorotating flat plates have been recently reported by Lin et al. (2006), Holmes, et al. (2006), and Richards, et al. (2008), amongst others. In general, the variation of the normal force with respect to the angle of attack appears to stall in the mid attack angle range with a large scale separation in the wake. To date however, no surface pressures have been measured on auto-rotating plates that are typical of a certain class of debris. This paper presents the results of an experiment to measure the aerodynamic forces on a flat plate held stationary at different angles to the flow and allowing the plate to auto-rotate. The forces were determined through the measurement of differential pressures on either side of the plate with internally mounted pressure transducers and data logging systems. Results are presented for surface pressure distributions and overall integrated forces and moments on the plates in coefficient form. Computed static force coefficients show the stall effect at the mid range angle of attack and some variation for different Reynolds numbers. Normal forces determined from autorotational experiments are higher than the static values at most pitch angles over a cycle. The resulting moment coefficient does not compare well with current analytical formulations which suggest the existence of a flow mechanism that cannot be completely described through static tests.