• Title/Summary/Keyword: Aerodynamic drag reduction

Search Result 74, Processing Time 0.024 seconds

Papers : An Experimental Study of the Aerodynamic Characteristics Using the Wing - tip Jet Blowing at the Aircraft (논문 : 날개끝 불어내기 장치가 있는 항공기의 공력특성에 관한 실험연구)

  • Hong, Hyeon-Ui;Jeong, Un-Gap;Kim, Beom-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • The pressure distributions on a semi-span wing 1/12 scale mode and sic component aerodynamic forces and moments on a complete 1/16 scale advanced trainer model were measured. To reduce wing-tip vortex strength, 3 wing-tip jet slot shaped(forward $35{^{\circ}C}$ direction, straigt direction, backward $35{^{\circ}C}$ direction) and 3 blowing coefficents (0.004, 0.009, 0.017) were considered. From experiment results, the case of straight direction and blowing coefficent of 0.017 was the best effective in the reduction of drag and in increase of lift-drag ratio and A rate of drag decrease and a rate of lift-drag ratio increase were of most effective on angle of attack 8 degree.

Application of Vortex Generators on Smart Un-manned Aerial Vehicle(SUAV) (스마트 무인기에 부착한 Vortex Generator 효과)

  • Chung, Jin-Deog;Choi, Sung-Wook;Cho, Tae-Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.688-693
    • /
    • 2007
  • To improve aerodynamic efficiency of the Smart Un-manned Aerial Vehicle(SUAV), vortex generator was applied along the wing upper surface during SUAV tests. Vortex generator, initially used in TR-S2 configuration to enhance lift characteristic, increased lift coefficient. Meanwhile vortex generator produced excessive drag and eventually reduced lift-to-drag ratio. To examine the effect of vortex generator's height, three different heights of vortex generator were used for various SUAV configuration. Vortex generator of 3mm height used in TR-S4 configuration produced 3.1% increase in maximum lift coefficient and 1.5% reduction in lift-to-drag ratio.

Aerodynamic performance evaluation of different cable-stayed bridges with composite decks

  • Zhou, Rui;Ge, Yaojun;Yang, Yongxin;Du, Yanliang;Zhang, Lihai
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.699-713
    • /
    • 2020
  • The aerodynamic performance of long-span cable-stayed bridges is much dependent on its geometrical configuration and countermeasure strategies. In present study, the aerodynamic performance of three composite cable-stayed bridges with different tower configurations and passive aerodynamic countermeasure strategies is systematically investigated by conducting a series of wind tunnel tests in conjunction with theoretical analysis. The structural characteristics of three composite bridges were firstly introduced, and then their stationary aerodynamic performance and wind-vibration performance (i.e., flutter performance, VIV performance and buffeting responses) were analyzed, respectively. The results show that the bridge with three symmetric towers (i.e., Bridge I) has the lowest natural frequencies among the three bridges, while the bridge with two symmetric towers (i.e., Bridge II) has the highest natural frequencies. Furthermore, the Bridge II has better stationary aerodynamic performance compared to two other bridges due to its relatively large drag force and lift moment coefficients, and the improvement in stationary aerodynamic performance resulting from the application of different countermeasures is limited. In contrast, it demonstrates that the application of both downward vertical central stabilizers (UDVCS) and horizontal guide plates (HGP) could potentially significantly improve the flutter and vortex-induced vibration (VIV) performance of the bridge with two asymmetric towers (i.e., Bridge III), while the combination of vertical interquartile stabilizers (VIS) and airflow-depressing boards (ADB) has the capacity of improving the VIV performance of Bridge II.

Evaluation of base shield plates effectiveness in reducing the drag of a rough circular cylinder in a cross flow

  • EL-Khairy, Nabil A.H.
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.377-389
    • /
    • 2008
  • An experimental investigation has been conducted to determine the effectiveness of base shield plates in reducing the drag of a rough circular cylinder in a cross flow at Reynolds numbers in the range $3{\times}10^4{\leq}Re{\leq}10.5{\times}10^4$. Three model configurations were investigated and compared: a plane cylinder (PC), a cylinder with a splitter plate (MC1) and a cylinder fitted with base shield plates (MC2). Each configuration was studied in the sub and supercritical flow regimes. The chord of the plates, L, ranged from 0.22 to 1.50D and the cavity width, G, between the plates was in the range from 0 to 0.93D. It is recognized that base shield plates can be employed more effectively than splitter plates to reduce the aerodynamic drag of circular cylinders in both the sub- and supercritical flow regimes. For subcritical flow regime, one can get 53% and 24% drag reductions for the MC2 and MC1 models with L/D=1.0, respectively, compared with the PC model. For supercritical flow regime however, the corresponding drag reductions are 38% and 7%.

Large Eddy Simulation of the flow around a finite-length square cylinder with free-end slot suction

  • Wang, Hanfeng;Zeng, Lingwei;Alam, Md. Mahbub;Guo, Wei
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.533-546
    • /
    • 2020
  • Large Eddy Simulation (LES) is used to study the effects of steady slot suction on the aerodynamic forces of and flow around a wall-mounted finite-length square cylinder. The aspect ratio H/d of the tested cylinder is 5, where H and d are the cylinder height and width, respectively. The Reynolds number based on free-stream oncoming flow velocity U and d is 2.78×104. The suction slot locates near the leading edge of the free end, with a width of 0.025d and a length of 0.9d. The suction coefficient Q (= Us/U) is varied as Q = 0, 1 and 3, where Us is the velocity at the entrance of the suction slot. It is found that the free-end steady slot suction can effectively suppress the aerodynamic forces of the model. The maximum reduction of aerodynamic forces occurs at Q = 1, with the time-mean drag, fluctuating drag, and fluctuating lift reduced by 3.75%, 19.08%, 40.91%, respectively. For Q = 3, all aerodynamic forces are still smaller than those for Q = 0 (uncontrolled case), but obviously higher than those for Q = 1. The involved control mechanism is successfully revealed, based on the comparison of the flow around cylinder free end and the near wake for the three tested Q values.

Effect of Trunk Height and Approaching Air Velocity of Notchback Road Vehicles on the Pressure Distribution of the Car Surface (Notchback자동차의 트렁크 높이와 공기속도가 차체 표면의 압력변화에 미치는 영향)

  • 박종수;최병대;김성준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.178-186
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the trunk height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different trunk heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard k-$\xi$ model is adopted for the simulation of turbulence. The numerical results say that the height variation of trunk makes almost no influence on the distribution of the value of pressure coefficient along upper surface but makes very strong effects on the rear surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the rear surface and the bottom surface. Approaching air velocity make no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surfaces one tried to assess aerodynamic drag and lift of vehicle. The pressure distribution on the rear surface affected more on drag and lift than pressure distribution on the front surface of the vehicle does. The increase of trunk height makes positive effects on the lift decrease but negative effects on drag reduction.

PREDICTION OF AERODYNAMIC PERFORMANCE LOSS OF A WIND TURBINE BLADE SECTION DUE TO CONTAMINANT ACCUMULATION (외부 오염물 증착에 의한 풍력 터빈 날개 단면의 공력 성능 저하 예측)

  • Yang, T.H.;Choi, J.H.;Yu, D.O.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.91-97
    • /
    • 2013
  • In the present study, the effects of contaminant accumulation and surface roughness on the aerodynamic performance of wind turbine blade sections were numerically investigated by using a flow solver based on unstructured meshes. The turbulent flow over the rough surface was modeled by a modified ${\kappa}-{\omega}$ SST turbulence model. The calculations were made for the NREL S809 airfoil with varying contaminant sizes and positions at several angles of attack. It was found that as the contaminant size increases, the degradation of the airfoil performance becomes more significant, and this trend is further amplified near the stall condition. When the contaminant is located at the upper surface near the leading edge, the loss in the aerodynamic performance of the blade section becomes more critical. It was also found that the surface roughness leads to a significant reduction of lift, in addition to increased drag.

Vortex induced vibration and flutter instability of two parallel cable-stayed bridges

  • Junruang, Jirawat;Boonyapinyo, Virote
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.633-648
    • /
    • 2020
  • The objective of this work was to investigate the interference effects of two-parallel bridge decks on aerodynamic coefficients, vortex-induced vibration, flutter instability and flutter derivatives. The two bridges have significant difference in cross-sections, dynamic properties, and flutter speeds of each isolate bridge. The aerodynamic static tests and aeroelastic tests were performed in TU-AIT boundary layer wind tunnel in Thammasat University (Thailand) with sectional models in a 1:90 scale. Three configuration cases, including the new bridge stand-alone (case 1), the upstream new bridge and downstream existing bridge (case 2), and the downstream new bridge and the upstream existing bridge (case 3), were selected in this study. The covariance-driven stochastic subspace identification technique (SSI-COV) was applied to identify aerodynamic parameters (i.e., natural frequency, structural damping and state space matrix) of the decks. The results showed that, interference effects of two bridges decks on aerodynamic coefficients result in the slightly reduction of the drag coefficient of case 2 and 3 when compared with case 1. The two parallel configurations of the bridge result in vortex-induced vibrations (VIV) and significantly lower the flutter speed compared with the new bridge alone. The huge torsional motion from upstream new bridge (case 2) generated turbulent wakes flow and resulted in vertical aerodynamic damping H1* of existing bridge becomes zero at wind speed of 72.01 m/s. In this case, the downstream existing bridge was subjected to galloping oscillation induced by the turbulent wake of upstream new bridge. The new bridge also results in significant reduction of the flutter speed of existing bridge from the 128.29 m/s flutter speed of the isolated existing bridge to the 75.35 m/s flutter speed of downstream existing bridge.

Aerodynamic Investigation of Three-Dimensional Wings in Ground Effect for Aero-levitation Electric Vehicle (공기부상 전동 운행체의 지면효과를 받는 3차원 날개에 대한 공력해석 연구)

  • Oh H. J.;Seo J. H.;Moon Y. J.;Cho J. S.;Yoon Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.196-201
    • /
    • 2004
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various ground clearances and wing spans at the Reynolds number of $2\times10^6$. Numerical results show that a sizeable three-dimensional flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and that this is conjectured a primary cause for the high lift-to-drag(L/D) reduction rate of the main wing, when the wing span is decreased. Improvements on L/D ratios of the wings with small spans are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction.

  • PDF

Experimental Study on Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 유동구조에 관한 실험적 연구)

  • Lee Jung-Yeop;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.298-305
    • /
    • 2006
  • The flow around a circular cylinder which oscillates rotationally with a relatively high forcing frequency has been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), oscillation amplitude $({\theta}_A)$, and frequency ratio $F_R=f_f/f_n$, where $f_f$ is the forcing frequency and $f_n$ is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\theta}_A={\pi}/6$, and $0{\leq}F_R{\leq}2$. The effect of frequency ratio $F_R$ on the flow structure of wake was evaluated by measuring wake velocity profile and spectral analysis of hot-wire signal. Depending on the frequency ratio $F_R$, the cylinder wake has 5 different flow regimes. The vortex formation length and vortex shedding frequency are changed significantly before and after the lock-on regime. The drag coefficient was reduced under the condition of $F_R<1.0$ and the maximum drag reduction is about 33% at $F_R=0.8$. However, the drag is increased as $F_R$ increases beyond $F_R=1.0$. This active flow control method can be effective in aerodynamic applications, if the forcing parameters are selected optimally.