• Title/Summary/Keyword: Aerodynamic drag reduction

Search Result 74, Processing Time 0.025 seconds

A STUDY ON THE AERODYNAMIC DRAG REDUCTION OF HIGH-SPEED TRAIN USING BOGIE SIDE FAIRING (고속열차 대차 측면 페어링 적용을 통한 공기저항 저감 연구)

  • Moon, J.S.;Kim, S.W.;Kwon, H.B.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The aerodynamic drag of high-speed train has been calculated and the effect of bogie side fairing on the aerodynamic drag has been investigated. Computational Fluid Dynamics (CFD) simulation based on steady-state 3 dimensional Navier-Stokes equation has been conducted employing FLUENT 12 and the aerodynamic model of HEMU-430x, the Korean next generation high-speed train under development has been built using GAMBIT 2.4.6. Three types of bogie side fairing configuration, the proto-type without fairing, half-covered fairing to avoid the interference with the bogie frame and full-covered fairing have been adopted to the train model to compare the drag reduction effects of the bogie side fairing configurations and the numerical results yields that the bogie side fairing can reduce the aerodynamic drag of the 6-car trainset up to 7.8%. The aerodynamic drag coefficient of each vehicle as well as the flow structures around the bogie system have also been examined to analyze the reason and mechanism of the drag reduction by bogie side fairing.

Target and Implementation of Aerodynamic Drag Reduction for High-speed Train to Reach Up to 500km/h Running Speed (주행속도 시속 500km 달성을 위한 고속철도 차량의 공기저항 저감 목표 및 달성 방안)

  • Kwon, Hyeok-Bin;Yun, Su-Hwan;Lee, Hyung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1320-1326
    • /
    • 2011
  • The maximum speed of high-speed rail is restricted to various factors such as track condition including slope and radius, tunnel and dynamic stability of vehicle. Among the various factors, traction effort and resistance to motion is principal and basic factor. In addition, at high speed over 300km/h, aerodynamic drag amounts up to 80% of resistance to motion, that it can be said that aerodynamic drag is the most important factor to decide the maximum speed of high-speed rail system. This paper deals with a measure to increase the maximum speed of high-speed train by reducing aerodynamic drag. The traction effort curve and resistance to motion curve of existing high-speed train under development has been employed to set up the target of aerodynamic drag reduction to reach up to 500km/h without modification traction system. In addition, the contribution of various sources of aerodynamic drag to total value has been analyzed and the strategy for implementation of aerodynamic drag reduction has been discussed based on the aerodynamic simulation results around the train using computational fluid dynamics.

  • PDF

An Effect of Roof-Fairing and Deflector System on the Reduction of Aerodynamic Drag of a Heavy-Duty Truck (대형트럭용 루프 훼어링과 디프렉트의 공기저항력 저감 특성에 관한 연구)

  • Kim, Chul-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.194-201
    • /
    • 2006
  • Roof-fairing and deflector system have been used on heavy-duty trucks to minimize aerodynamic drag force not only for driving stability of the truck but also for energy saving by reducing the required driving power of the vehicle. In this study, a numerical simulation was carried out to see aerodynamic effect of the drag reducing device on the model vehicle. Drag and lift force generated on the five different models of the drag reducing system were calculated and compared them each other to see which type of device is efficient on the reduction of driving power of the vehicles quantitatively. An experiment has been done to see airflow characteristics on the model vehicles. Airflow patterns around the model vehicles were visualized by smoke generation method to compare the complexity of airflow around drag reducing device. From the results, the deflector systems(Model 5,6) were revealed as a better device for reduction of aerodynamic drag than the roof-fairing systems(Model 2,3,4) on the heavy-duty truck and it can be expected that over 10% of brake power of an engine can be saved on a tractor-trailer by the aerodynamic drag reducing device at normal speed range($80km/h{\sim}$).

Study of Shape Optimization for Aerodynamic Drag Reduction of High-speed train (공기저항 저감을 위한 고속열차 형상 최적설계 연구)

  • Yun, Su-Hwan;Kwak, Min-Ho;Park, Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.709-716
    • /
    • 2016
  • To reduce the aerodynamic drag of high speed trains, aerodynamic drag of KTX-Sancheon was analyzed in detail according to individual components. Aerodynamic drag values of the power cars (front car, rear car) and bogies are about 42.9% and 10.1% of the total aerodynamic drag, respectively. For the aerodynamic drag reduction of a power-car, a nose shape optimization was conducted using the Broyden-Fletcher-Goldfarb-Shanno optimum method. Shape change of a power car and bogie fairing adaptation are used to reduce the aerodynamic drag of a car body. The aerodynamic drag of the optimized train-set dropped by 15.0% compared to the aerodynamic drag of the KTX-Sancheon; a running resistance reduction of 12% is expected at the speed of 350km/h.

Study of Aerodynamic Interference between Running Cars (주행중인 자동차 간의 공력 간섭현상 연구)

  • Lee, Minjun;Cha, Dooguen;Bae, Heejung;Kwan, Gihyun;Kim, Jiwoong;Kim, Moonsang
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.26-31
    • /
    • 2010
  • Reduction of the aerodynamic drag is one of the most hot issues of car industries. Many researchers have studied in the area of drag reduction methodology using experimental tools or numerical tools. In general, car shape design is the main focus to reduce the drag in aerodynamic research area. However, not many people have studied the aerodynamic interference between running cars to figure out the drag variation. In this research, the aerodynamic interference between two running cars have been analyzed by using numerical tools, FLUENT 6.2. Several different models of cars and two different distances between two running cars are considered.

  • PDF

Study of Aerodynamic Interference between Running Cars (주행중인 자동차 간의 공력 간섭현상 연구)

  • Lee, Minjun;Cha, Dooguen;Bae, Heejung;Kwan, Gihyun;Kim, Jiwoong;Kim, Moonsang
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • Reduction of the aerodynamic drag is one of the most hot issues of car industries. Many researchers have studied in the area of drag reduction methodology using experimental tools or numerical tools. In general, car shape design is the main focus to reduce the drag in aerodynamic research area. However, not many people have studied the aerodynamic interference between running cars to figure out the drag variation. In this research, the aerodynamic interference between two running cars have been analyzed by using numerical tools, FLUENT 6.2. Several different models of cars and two different distances between two running cars are considered.

  • PDF

Wind Tunnel Test of 2D Model for Plasma Flow Control using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 2차원 모델의 플라즈마 유동제어 풍동시험)

  • Yun, Su-Hwan;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.527-528
    • /
    • 2012
  • DBD (Dielectric Barrier Discharge) plasma actuator was designed for aerodynamic drag reduction using plasma flow control, and the drag reduction was measured by wind-tunnel tests using 2D test model. At the zero wind velocity, the plasma flow control had no effect on the drag reduction because the flow separation and surface friction drag were not occurred. At the wind velocity of 2m/s, 9.7% of drag was reduced by the flow separation control. The drag reduction decreased as the wind velocity increased.

  • PDF

Study on drag reduction of commercial vehicle using flow control device (유동 제어 장치를 이용한 상용차량의 항력저감 연구)

  • S. H. Kim;J. J. Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.8-13
    • /
    • 2023
  • The primary challenge in improving fuel efficiency and reducing air pollution for commercial vehicles is reducing their aerodynamic drag. Various flow control devices, such as cab-roof fairing, gap fairing, cab extender, and side skirt have been introduced to reduce drag, however, the drag reduction effect and applicability are different depending on each commercial vehicle model. To evaluate the fuel consumption of heavy vehicles, a comprehensive research approach, including drag force measurement, flow field analysis is required. This study investigated the effect of a cab extender, which installed rear region of cab, on a drag coefficient of commercial vehicle through wind tunnel experiments and CFD. The results showed that the cab extender significantly modified the flow structure around the vehicle, leading to 8.2% reduction in drag coefficient compared to the original vehicle model. These results would provide practical application for enhancing the aerodynamic performance and fuel efficiency of heavy vehicle.

A Study for Aerodynamic Drag Reduction on Variable Message Sign using Flow Analysis (유동해석 기반 도로전광표지 공기저항 저감 구조 연구)

  • Lim, Se-Mi;Song, Dae-Young;Park, Kyeung-U;Park, Jun-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.140-146
    • /
    • 2011
  • As the demand of Variable Message Sign(VMS) has become pervasive in fulfilling the ITS policy, the costs of maintaining the Variable Message Sign operation have also increased. This paper proposes the U-curved figure, the C-curved figure and the ventilated figure type for aerodynamic drag reduction on Variable Message Sign and shows the analysis of aerodynamic drag effects using Flow Analysis. As a results of the flow analysis for right-angled, 45 degrees from side to side and 45 degrees from up or down, the C-curved figure and the ventilated figure type show about 30% aerodynamic drag reduction in all direction. And the U-curved figure type shows vivid aerodynamic drag reduction for right-angled and 45 degree from side to side, but trivial aerodynamic drag reduction for 45 degree from up or down. It is possible to reduce not only the damage on Variable Message Sign due to typhoon because of the aerodynamic drag reduction, but also installation constraints because of lighter Variable Message Sign support structure by appling the proposed structure and analysis in this paper.

Aerodynamic Drag Reduction on High-performance EMU Train by Streamlined Shape Modification (유선형 형상 개선을 통한 고성능 EMU 열차의 공기저항 저감 연구)

  • Kwon, Hyeok-Bin;Hong, Jai-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.169-174
    • /
    • 2013
  • The effect of modifying the shape of a high-performance EMU train on the aerodynamic drag is studied here using Computational Fluid Dynamics(CFD) based on three dimensional Steady-state Navier-Stokes equation and two equation turbulence modeling. FLUENT 12 and Gambit 2.4.6 are employed for a numerical simulation of the aerodynamic drag of a streamlined-shape train as well as a proto type train. The characteristics of the aerodynamic drag of trains in tunnels are analyzed in a comparison with these characteristics in an open space. The contribution of the aerodynamic drag of each case is also investigated to establish principal pertaining to drag reduction for urban trains in tunnels. The aerodynamic drag of a streamlined train was reduced to 9.8% relative to a proto-type train with a blunt nose and a protruding roof facility and underbody shape: the running resistance is expected to be reduced by as much as 4% at a running speed of 80km/h.