• 제목/요약/키워드: Aerodynamic Shape

검색결과 411건 처리시간 0.023초

주행중인 자동차 간의 공력 간섭현상 연구 (Study of Aerodynamic Interference between Running Cars)

  • 이민준;차두근;배희정;권기현;김지웅;김문상
    • 항공우주시스템공학회지
    • /
    • 제3권3호
    • /
    • pp.7-12
    • /
    • 2009
  • Reduction of the aerodynamic drag is one of the most hot issues of car industries. Many researchers have studied in the area of drag reduction methodology using experimental tools or numerical tools. In general, car shape design is the main focus to reduce the drag in aerodynamic research area. However, not many people have studied the aerodynamic interference between running cars to figure out the drag variation. In this research, the aerodynamic interference between two running cars have been analyzed by using numerical tools, FLUENT 6.2. Several different models of cars and two different distances between two running cars are considered.

  • PDF

비행탄두 형상 최적화를 이용한 사거리 증대 연구 (Extended Range of a Projectile Using Optimization of Body Shape)

  • 김진석
    • 한국시뮬레이션학회논문지
    • /
    • 제29권3호
    • /
    • pp.49-55
    • /
    • 2020
  • 발사체의 사거리 증대는 중요한 성능개선 목표 중 하나이다. 일반적으로 발사체 비행탄두의 형상은 공기역학 및 구조적인 요소를 복합적으로 고려하여 선정한다. 몸체, 탄두부 및 탄미부 형상의 선정은 공기역학적 설계에 중요한 영향을 미친다. 발사체 비행탄두 형상의 주요 설계 요소는 공기역학적 항력이다. 공기역학적 항력은 발사체의 운동과 반대 방향으로 작용하는 공기역학적 힘이다. 준실험적 기법을 이용하여 탄두부, 탄미부 및 몸체 형상이 발사체의 공기역학적 특성에 미치는 영향을 분석하기 위한 연구를 수행하였다. 여러 가지 비행탄두 형상 변수에 대한 연구를 수행하였으며, 최대 사거리 성능 분석에는 탄도 모사분석 모델을 사용하였다. 발사체 비행탄두 형상 최적화를 이용한 사거리 증대 가능성을 분석하고, 형상 변수 최적화에 의한 사거리 증대 효과를 확인하였다.

고속철도의 증속 시 공기역학적 문제 및 요구사항에 대한 연구 (A Study on Aerodynamic Problems and Requirements for speed up of High-speed railway system)

  • 권혁빈;김대상;남성원;윤수환;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.20-27
    • /
    • 2011
  • High-speed railway system is exposed to severe aerodynamic problems and has various requirements both on design and operation; 80% of running resistance is composed of aerodynamic drag, the cross-sectional area and portal shape of tunnel should be designed under aerodynamic consideration, and natural wind velocity should always be monitored to prevent the overturning of train by crosswinds. In addition, most of the aerodynamic problems are proportional to the running speed or square of the running speed. Thus, when the running speed of a high-speed railway system either on operation or under construction is to be increased, the aerodynamic problems should be assessed in advance and the countermeasures should be prepared to alleviate the aerodynamic problems to meet certain requirements. In this study, aerodynamic problems that could occur at speed up of high-speed line have been investigated and aerodynamic requirements to meet the increased operational speed have been studied referring the international and domestic rules, guidance, and recommendations.

  • PDF

Ni-Ti actuators and genetically optimized compliant ribs for an adaptive wing

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • 제5권6호
    • /
    • pp.645-662
    • /
    • 2009
  • Adaptive wings are capable of properly modifying their shape depending on the current aerodynamic conditions, in order to improve the overall performance of a flying vehicle. In this paper is presented the concept design of a small-scale compliant wing rib whose outline may be distorted in order to switch from an aerodynamic profile to another. The distortion loads are induced by shape memory alloy actuators placed within the frame of a wing section whose elastic response is predicted by the matrix method with beam formulation. Genetic optimization is used to find a wing rib structure (corresponding to the first airfoil) able to properly deforms itself when loaded by the SMA-induced forces, becoming as close as possible to the desired target shape (second airfoil). An experimental validation of the design procedure is also carried out with reference to a simplified structure layout.

비틀림각에 따른 HWAT의 공력특성 전산해석 (CFD ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF HWAT BASED ON THE DIFFERENT TWIST ANGLE USING CFD)

  • 이명수;유성수;황도연;한병윤;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.19-26
    • /
    • 2009
  • The objective of this study is to investigate aerodynamic characteristics of a Horizontal-axis wind turbines(HAWT), using CFD method with a commercial code STAR-CCM+ version 3.06. To verify the reliability of the computations, the CFD results are compared with the experimental ones of the National Renewable Energy Laboratory(NREL) Phase Ⅵ HAWT. For the comparison and examination of aerodynamic characteristics, the existent shape with a predesigned twist angle was replaced by the one with one-dimensional linear twist angle. In this study, the pressure contour and stream line around the blade were analyzed as main focus. Through this study the more efficient shape of airfoil is suggested with consideration of manufacturing cost.

  • PDF

반응면 기법을 사용한 OA 익형의 공력 최적 설계 (AERODYNAMIC DESIGN OPTIMIZATION OF OA AIRFOIL USING THE RESPONSE SURFACE METHOD)

  • 사정환;박수형;김창주;윤철용;김승호;김상호;이재우
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.51-56
    • /
    • 2009
  • Optimization with metamodel is one of numerical optimization methods. Response surface method is performed for making metamodel. The Hcks-Henne function is used for designing 2D shape of the airfoil and spring analogy is used to change the grid according to the change in shape of the airfoil. Aerodynamic coefficient required for response surface method are obtained by using Navier-Stokes solver with $\kappa-\omega$ shear stress transport turbulence model. For the baseline airfoils, OA 312, OA 309, and OA 407 airfoils select and optimize to improve aerodynamic performance.

  • PDF

Efficient Aerodynamic Computation of a Wing Model Considering Body Effect for the Aeroelastic Application

  • Lee, Seung-Jun;Im, Dong-Kyun;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권1호
    • /
    • pp.14-19
    • /
    • 2009
  • The typical aeroelastic analysis for a complex configuration such as a complete aircraft was done using the aerodynamic results of the wing and the structural modes of a complete aircraft; that is, the aerodynamics of a wing of a complete aircraft is assumed to be not much influenced by the body shape. Nevertheless, the body shape can cause a distortion of aerodynamic pressure on the wing surface and it is necessary to investigate the body effect in flutter analysis. In this reseasrch, MGM inverse design method is applied to include the body effect of a wing-body model which disturbs the pressure distribution on the wing surface.

근사신뢰도기법을 이용한 효율적인 공력 형상 설계에 관한 연구 (Study of the Efficient Aerodynamic Shape Design Optimization Using the Approximate Reliability Method)

  • 김수환;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.187-191
    • /
    • 2004
  • The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods. To overcome the computational inefficiency of RBDO, single loop methods have been proposed. These need less function calls than that of RBDO but much more than that of DO. In this study, the approximate reliability method is proposed that the computational requirement is nearly the same as DO and the reliability accuracy is good compared with that of RBDO. Using this method, the 3-D viscous aerodynamic shape design optimization with uncertainty is performed very efficiently.

  • PDF

격납용기내에서 분무형 나트륨화재 현상 해석 (Analysis of spray sodium fire phenomena in the containment vessel)

  • 조병렬;권선길;황성태
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.79-88
    • /
    • 1996
  • A hypothetical accident in the containment vessel of liquid metal reactor could cause a pressure, temperature rise, and a strong aerosol release. The computer codes relating to the modelization of these accident make it necessary to use various input parameter, among which is the dynamic shape factor of aerosols produced. Combustion experiments of sodium spray fire carried out in a closed vessel, which was vertical cylinder made of 1.2m in diameter and 1.8m hight with a volume of 1.7$m^3$. The results of theoretical analysis presented here was compared to data obtained from experiments. The experimental results were summarized as follows. 1) The aerodynamic diameter and geometric diameter of aerosols are decreasing with increasing of injection pressure and injection temperature of sodium 2) The dynamic shape factor of aerosol is proportional to the aerodynamic diameter for a given particle. 3) The correspondence between the aerodynamic diameter and geometric diameter can be as $D_{ae}=0.70 D_{ge}$. 4) Peak pressure rose with increase in pressure and temperature of injection sodium, being more sensitive to the injection pressure than the injection temperature.

  • PDF

Unsteady Aerodynamic Loads on High Speed Trains Passing by Each Other

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.867-878
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using three-dimensional Euler equations. Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. Numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, length and the existence of a tunnel on the crossing event. Unsteady aerodynamic loads-a side force and a drag force-acting on the train during the crossing are numerically predicted and analyzed. The side force mainly depends on the nose-shape, and the drag force depends on tunnel existence. Also. a push-pull (i.e.impluse force) force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary to evaluate the stability of high speed multi-car trains. The results also indicate the effectiveness of the present numerical method for simulating the unsteady flow fields induced by bodies in relative motion.

  • PDF