• 제목/요약/키워드: Aerodynamic Performance Characteristics

검색결과 318건 처리시간 0.025초

CFDS 코드를 이용한 측추력 유도탄 공력해석 (Aerodynamic Analysis of Lateral Jet Controlled Missile Using CfDS Code)

  • 김재관;이정일;김종암;홍승규;이광섭;안창수
    • 한국군사과학기술학회지
    • /
    • 제9권2호
    • /
    • pp.143-151
    • /
    • 2006
  • This paper investigates effects of reaction control jet on the aerodynamic performance of generic interceptor missile operating at supersonic flight condition. Parallelized CFDS code is used as a viscous flow solver. The generic interceptor missile configuration composed of a long and slender body and fixed tail fins. The behavior of normal force, axial force and pitching moment characteristics at altitude conditions corresponding to 10 km is studied according to the given control jet conditions, different angle of attacks based on the analysis of aerodynamic characteristics.

풍력터빈용 날개 설계 및 공력해석에 관한 연구 (A Study on Aerodynamic Analysis and Design of Wind Turbine Blade)

  • 김정환;이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.847-852
    • /
    • 2004
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio. structure. a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method This Process is programed by delphi-language. The Program has any input values such as tip speed ratio blade length. hub length. a section of shape and max lift-to-drag ratio. The Program displays chord length and twist angle by input value and analyzes performance of the blade.

Aerodynamic Investigation for Prospective Aerospace Vehicle in the Transitional Regime

  • Ivanovich, Khlopkov Yuri;Myint, Zay Yar Myo;Yurievich, Khlopkov Anton
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.215-221
    • /
    • 2013
  • The basic quantitative tool for the study of hypersonic rarefied flows is the direct simulation Monte Carlo method (DSMC). The DSMC method requires a large amount of computer memory and performance and is unreasonably expensive at the first stage of spacecraft design and trajectory analysis. A possible solution to this problem is approximate engineering methods. However, the Monte Carlo method remains the most reliable approach to compare to the engineering methods that provide good results for the global aerodynamic coefficients of various geometry designs. This paper presents the calculation results of aerodynamic characteristics for spacecraft vehicles in the free molecular, the transitional and the continuum regimes using the local engineering method. Results and methods would be useful to calculate aerodynamics for new-generation hypersonic vehicle designs.

대형 트럭 코너베인 주위의 공력특성에 관한 3차원 수치해석 (Three-Dimensional Numerical Study on the Aerodynamic Characteristics around Corner Vane in Heavy-Duty Truck)

  • 김민호;정우인
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.181-189
    • /
    • 2000
  • The aerodynamic characteristics of large transport vehicle has become more and more important in recent vehicle design to improve driving performance in high speed cruising and raise the product valve with regard to a comfortable driving condition. Hence, detailed knowledge of the flow field around truck coner vane is essential to improve fuel efficiency and reduce the dirt contamination on vehicle body surface. In this study, three-dimensional flow characteristics around corner vane attached to truck cabin were computed for the steady, incompressible, and high speed viscous flow, adopting the RNG k-$\varepsilon$ turbulence model. In order to investigate the influence of configuration and structure of corner vane, computations were carried out for four cases at a high Reynolds number, Re=4.1$\times$106 (based on the cabin height). The global flow patterns, drag coefficient and the distributions such as velocity magnitude, turbulent kinetic energy around the corner vane, were examined. As a result of this study, we could identify the flow characteristics around corner vane for the variation of corner vane length and width. Also, suggest the improved structure to reduce the dirt contamination in cabin side.

  • PDF

화포에 의해 손상된 날개의 공력특성에 관한 연구 (A Study on the Aerodynamic Characteristic of Gunfire Damaged Airfoil)

  • 이기영;정형석;김시태
    • 한국군사과학기술학회지
    • /
    • 제11권2호
    • /
    • pp.144-151
    • /
    • 2008
  • An experimental study has been conducted to investigate the effects of circular damage hole on the characteristics of airfoil performance. The damage on a wing created from a hit by anti-air artillery was modeled as a circular hole. Force balance measurements and static pressure measurements on the wing surface were carried out for the cases of having damage holes of 10% chord size at quarter chord and/or half chord positions. All experiments were conducted at Reynolds number of $2.85\times10^5$ based on the chord length. The surface pressure data show big pressure alterations near the circular damage holes. This abnormal surface pressure distribution produces shear stress that could lead to the acceleration of the structural degradation of the wing around the circular damage hole. However, in spite of the existence of circular damage holes, the measured force data indicated the only a slight decrease in lift accompanied by increase in drag compared to the results of undamaged one. The influence of damage hole on the aerodynamic performance was increased as the location of damage moved to the leading edge. The effect on the control force was insignificant when the damaged size was not large.

Low Speed Thrust Characteristics of a Modified Sonic Arc Airfoil Rotor through Spin Test Measurement

  • Lee, Jang-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.317-322
    • /
    • 2012
  • The low speed aerodynamic characteristics for a modified sonic arc airfoil which is designed by using the nose shape function of sonic arc, the shape function of NACA four-digit wing sections, and Maple are experimentally investigated. The small rotor blades of a modified sonic arc and NACA0012 airfoil are precisely fabricated with a commercially available light aluminum(Al 6061-T6) and are spin tested over a low speed range (3000rpm-5000rpm). In a consuming power comparison, the consuming powers of NACA0012 are higher than that of modified sonic arcs at each pitch angle. The measured rotor thrust for each pitch angle is used to estimate the rotor thrust coefficient according to momentum theory in the hover state. The value of thrust coefficients for both two airfoils at each pitch angle show almost constant values over the low Mach number range. However, the rotor thrust coefficient of NACA0012 is higher than that of the modified sonic arc at each pitch angle. In conclusion, the aerodynamic performance of NACA0012 is better than that of modified sonic arcs in the low speed regime. This test model will provide a convenient platform for improving the aerodynamic performance of small scale airfoils and for performing design optimization studies.

박용 터보챠저 원심압축기의 공력설계에 대한 해석적 연구 (A Study on the Analysis for Aerodynamic design of centrifugal Compressor of the Marine Turbocharger)

  • 오국택;김홍원;갈상학;하지수;유승찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.649-654
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for centrifugal compressor of the marine middle engine turbocharger. The performance characteristics of turbocharger compressor are investigated at various operating conditions using mass flow rate and revolution speed, and computational flow analysis for impeller and diffuser at design point are performed. Preliminary design results correspond to actual compressor geometric values comparatively by applying modified slip factor. Performance prediction and flow analysis results show good agreement with experiments. Therefore, this will provide the performance prediction in preliminary design, and help to increase the design capability for optimized impeller.

  • PDF

가변속 고속블로워의 성능특성에 관한 연구 (A Study on Performance of a Variable-Speed Turboblower)

  • 최범석;박무룡;황순찬;박준영
    • 한국유체기계학회 논문집
    • /
    • 제7권5호
    • /
    • pp.43-49
    • /
    • 2004
  • A turbo blower, driven by a high-speed blushless DC motor, was designed as a efficient substitute of a ring blower or a roots blower. Computational analysis and performance tests have been performed to investigate performance characteristics of the blower. Experimental measurements showed that the blower has a good stability margin. This paper gives an outline of design, computational flow analysis and performance test for aerodynamic evaluation of the variable speed turboblower.

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

Measured aerodynamic coefficients of without and with spiked blunt body at Mach 6

  • Kalimuthu, R.;Mehta, R.C.;Rathakrishnan, E.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권3호
    • /
    • pp.225-238
    • /
    • 2019
  • A spike attached to a blunt nosed body significantly alters its flow field and influences the aerodynamic coefficients at hypersonic speed. The basic body is an axisymmetric, with a hemisphere nose followed by a cylindrical portion. Five different types of spikes, namely, conical aerospike, hemisphere aerospike, flat-face aerospike, hemisphere aerodisk and flat-face aerodisk are attached to the basic body in order to assess the aerodynamic characteristic. The spiked blunt body without the aerospike or aerodisk has been set to be a basic model. The coefficients of drag, lift and pitching moment were measured with and without blunt spike body for the length-to-diameter ratio (L/D) of 0.5, 1.0, 1.5 and 2.0, at Mach 6 and angle of attack up to 8 degrees using a strain gauge balance. The measured forces and moment data are employed to determine the relative performance of the aerodynamic with respect to the basic model. A maximum of 77 percent drag reduction was achieved with hemisphere aerospike of L/D = 2.0. The comparison of aerodynamic coefficients between the basic model and the spiked blunt body reveals that the aerodynamic drag and pitching moment coefficients decrease with increasing the L/D ratio and angle of attack but the lift coefficient has increasing characteristics.