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Abstract

The basic quantitative tool for the study of hypersonic rarefied flows is the direct simulation Monte Carlo method (DSMC). 

The DSMC method requires a large amount of computer memory and performance and is unreasonably expensive at the first 

stage of spacecraft design and trajectory analysis. A possible solution to this problem is approximate engineering methods. 

However, the Monte Carlo method remains the most reliable approach to compare to the engineering methods that provide 

good results for the global aerodynamic coefficients of various geometry designs. This paper presents the calculation results 

of aerodynamic characteristics for spacecraft vehicles in the free molecular, the transitional and the continuum regimes using 

the local engineering method. Results and methods would be useful to calculate aerodynamics for new-generation hypersonic 

vehicle designs.
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1. Introduction

The aerospace system is the main indicator of the 

international power of any country concerned with 

guaranteeing security, the standard of scientific research 

and technical development. When designing the launch 

system of cargo and people into orbit, we used high-altitude 

aviation and rocket technology. In the future, almost all the 

projects are to design new space systems for multiple use 

- to launch loads into orbit and return from it. First, this is 

related to the use of winged spacecraft for descent and 

landing on usual aerodromes. To estimate the aerodynamic 

loads and to predict the landing area, one should know at 

the stage of initial design, the coefficients of aerodynamic 

forces and moments of spacecraft for varying temperatures, 

densities and flight velocities for numerous possible descent 

trajectories.

The development of spacecraft and rocket technologies 

requires reliable data on the aerodynamic and 

aerothermodynamic characteristics for hypersonic speed in 

an entire range of flow regimes, i.e., from the continuum flow 

regime to the free-molecular regime. During de-orbiting, the 

spacecraft passes through the free molecular, then through 

the transitional regime and the final flight is in the continuum 

flow.

It is well known that for flight in the upper atmosphere , 

where it is necessary to take into account the molecular 

structure of a gas, kinematics models are applied, in 

particular, the Boltzmann equation and corresponding 

numerical methods of simulation. In the extreme case of free-

molecular flow, the integral of collisions in the Boltzmann 

equation becomes zero, and its general solution is a boundary 

function of distribution, which remains constant along 

the paths of particles [1]. While aircraft are moving in a low 

atmosphere, the problems are reduced to the problems that 

can be solved in the frame of continuum theory or, to be more 

precise, by application of the Navier-Stokes equations and 

Euler equations. It is natural to create engineering methods, 

justified by cumulative data of experimental, theoretical and 

numerical results, enabling the prediction of aerodynamics 

characteristics of complex bodies in the transitional regime 

[2]. 
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The difficulty in the development of a hypersonic vehicle 

is caused by quite a number of problems of modeling full-

scale flight conditions in wind tunnels. The analysis of the 

aerodynamics and aerothermodynamic characteristics of 

a hypersonic vehicle at high-altitude requires numerous 

numerical calculations [3-5]. 

To correctly simulate hypersonic flows, the flows must 

be understood and modeled correctly and this truer than in 

the numerical simulation of hypersonic flows. Hypersonics 

must be dominated by an increased understanding of fluid 

mechanics reality and an appreciation between reality and 

the modeling of that reality [6]. The benefits of numerical 

simulation for flight vehicle design are enormous: much 

improved aerodynamic shape definition and optimization, 

provision of accurate and reliable aerodynamic data 

and highly accurate determination of thermal and 

mechanical load [7]. Multi-parametric calculations can be 

performed only by using an approximation engineering 

approach. Computer modeling allows rapid analysis of the 

aerodynamic characteristics of hypersonic vehicles using 

theoretical and experimental research in aerodynamics of 

hypersonic flows. 

The basic quantitative tool for the study of hypersonic 

rarefied flows is the direct simulation Monte Carlo method 

(DSMC) [8, 2]. The DSMC method requires a large amount 

of computer memory and performance and is unreasonably 

expensive at the initial stage of spacecraft design and 

trajectory analysis. Approximate engineering methods pose a 

possible solution to this problem. These methods allow us to 

calculate aerodynamic characteristics of vehicles for multiple 

variants of free-stream parameters within a reasonable time 

and to refine the results at the most important segments of 

the flight trajectory by the DSMC method. The early work of 

[2] indicated that the local engineering method could have a 

significant effect on aerodynamic characteristics of various 

hypersonic vehicles.

The purpose of this work is to create an engineering 

program for aerodynamic characteristics calculation of the 

perspective hypersonic vehicles. This method is suited to 

calculate for hypersonic vehicles, taking into account the 

influence of Reynolds number, and provide good results for 

various vehicle shapes.

2. ��Calculation Methods for Hypersonic Aero-
dynamics

Difficulties of solving aerodynamic problems of overflow 

on bodies of rarefied gas stimulated the development 

of engineering semi-empirical methods based on the 

accumulated experimental data. The most suitable method 

to compute aerodynamic forces of a spacecraft relies on 

bridging formulae. When modeling the natural conditions, 

it is necessary to consider the basic similarity criteria. The 

hypersonic aerodynamic coefficients most commonly used 

parameters are:
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The famous Newtonian sine squared law indicated that 

the force varies as the square of the sine of the deflection 

angle. More than half century later it was indicated that 

Newton’s sine-squared law was not very accurate and, 

indeed, the preponderance of fluid dynamic experience up 
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For the last 50 years, the introduction of modified 

Newtonian theory continues to be used often to generate 

approximation for the pressure acting on configurations in 

hypersonic flows [13-15].

In this work, the expressions for the elementary pressure 

forces and friction forces are applied in the form described 

in [2, 16, 17]. The local formulae take directly into account 

the geometry of the vehicle and calculate pressure and skin 

friction distribution on the body surface.
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Where, h is a relative lateral dimension of the body, which is equal to the ratio of its height to its length. 

The technique was proved to be good for the calculation of hypersonic flow for convex and not very thin 

bodies. The calculation fully reflects a qualitative behavior of drag force coefficient CD as a function of the 

medium rarefaction within the whole range of the angles of attack, and provides a quantitative agreement 

with the experiment and calculation through the Boltzmann equation with an accuracy of 5%. Considering 

the accuracy of the relation of the locality method, it can be said that they are applied with the smallest error 

in the case of the bodies that are close to being spherical, and are not applied in the case of very thin bodies, 

when the condition is M sin  >> 1 [2].  

Thus, the locality method in the calculation of aerodynamic characteristics of the bodies in the hypersonic 

flow of rarefied gas in the transitional regime gives a good result for CD for a wide range of bodies, and a 

qualitatively sufficient result for lift force coefficient CL. A comparison of the experimental and calculated 

results (dashed curve) of drag coefficient CD for the sphere using the local engineering method (M = 5.15-

10, Tw/T0 = 1) is performed in fig. 2 [16]. It can be seen that the influence is small.  Figure 3 presents the 

results of drag coefficients CD () for the space shuttle with the use of this method. 
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3. Computational Results and Discussion

The coefficients of drag force CD, lift force CL and pitching 

moment MZ ware calculated according to equations, as 

below
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Lref, Sref – references length and surface; Fi  M – resultant force acting on the vehicle and moment, 

respectively. 

The calculation has been performed through the method described in the previous section within the range 

of angles of attack  from 0 deg up to 90 deg with a step of 5 deg. The parameters of the problem are the 

following: ratio of heat capacities  = 1.4; temperature factor tw = Tw/T0 = 0.01; velocity ratio M = 15, 

Reynolds number Rе0 = 0, 10, 102, 104. 

The dependencies of the drag force coefficient CD, lift force coefficient CL and pitching moment 

coefficient MZ on angle of attack  from 0 to 90 deg for the prospective spacecraft vehicle “Clipper, TsAGI 

model” (fig. 1) [17, 18] are presented in figs 4-9. Comparisons of the numerical values of CD, CL, MZ for the 

spacecraft vehicle using the DSMC method, Newton’s method and local engineering method are also 

presented in figs 4-6. Thus, the dependencies of the CD, CL, MZ on the Reynolds number are significant in all 

ranges of angle of attack. This comparison led to the corrections of the computation of the aerodynamic 

characteristics coefficients. 

 From these results, it can be seen that the influence of results by DSMC, Newton’s method and 

local engineering method at Re00 (in the free molecular regime) is not significant. The growth of a 

temperature ratio for the free molecular regime, leads to a considerable growth of the absolute value of CL 

and to the loss of symmetry of CL() in respect to the coordinate origin, and these tendencies were noted to 

by analysis of the results obtained by the Monte Carlo method. Thus, it can see that the local engineering 

method gives good results in the calculation of aerodynamic characteristics of hypersonic vehicles in rarefied 

gas flow. The methods considered do not take into account the influence of the interaction of a boundary 

layer with the inviscid hypersonic flow at the large numbers of Re0. 

 It has to be pointed out that when the Reynolds number increased, the drag coefficients CD of 

vehicle diminished, which can be explained by the decrease of normal and tangent stresses (fig. 7). At high 
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are also presented in figs 4-6. Thus, the dependencies 

of the CD, CL, MZ on the Reynolds number are significant 

in all ranges of angle of attack. This comparison led to 

the corrections of the computation of the aerodynamic 

characteristics coefficients.
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method at Re0→0 (in the free molecular regime) is not 
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absolute value of CL and to the loss of symmetry of CL(α) 

in respect to the coordinate origin, and these tendencies 
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Fig. 6. Pitching moment coefficients MZ for “Clipper” (tw = 0.01) 
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which can be explained by the decrease of normal and 

tangent stresses (fig. 7). At high Reynolds number Re0 ≥ 106, 

characteristics are almost unchanged. The dependency 

CL(α) is increased at a high Reynolds number, which can be 

explained by the decrease of normal and tangent stresses 

(fig. 8). The values of MZ (in respect to the center of mass of 

a uniform body) are quite sensitive to the variation of Re0. 

MZ changes its sign to less than zero at Re0 ~ 102. At Re0 ~ 

104, the value of MZ = - 0.03 at the angle of attack is reached 

at α≈ 40 deg (fig. 9). As it follows from these results, the 

coefficient of moment of tangent MZ is less sensitive to the 

variations of the temperature ratio, but its value means 

that this factor should be necessarily taken into account 

by the analysis of the variations of the body’s orientation, 

when this body is subject to the action of a flow of strongly 

rarefied gas. 

Fig. 8. Dependencies of lift coefficients CL () for “Clipper” on various Reynolds number
Fig. 8. ��Dependencies of lift coefficients CL (α) for “Clipper” on various Reynolds number 

Fig. 9. Dependencies of pitching moment coefficients MZ () for “Clipper” on various Reynolds 

number 
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Fig. 9. ��Dependencies of pitching moment coefficients MZ (α) for “Clipper” on various Reynolds number
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4. Conclusions

The analysis of different approaches to calculate 

aerodynamic characteristics of prospective spacecraft 

vehicles in rarefied gas flow were performed. The 

engineering method to calculate hypersonic aerodynamics 

in the transitional regime is described. The calculation 

results of aerodynamic characteristics for a spacecraft 

vehicle by the engineering method in transitional regime 

with various Reynolds numbers are presented. Comparison 

to Newton’s method and the DSMC method are described. 

We can reduce calculation errors in vehicle design projects 

by multiple calculations using this method. The above 

engineering method in transitional regimes gives a good 

result for a wide range of bodies. The obtained data can be 

applied in the future for hypersonic vehicle design.
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