• Title/Summary/Keyword: Aerodynamic Heating

Search Result 68, Processing Time 0.022 seconds

Measurement of Aerodynamic Heating over a Protuberance in Hypersonic Flow of Mach 7 (Mach 7 극초음속 유동 내의 돌출물 공력가열 계측)

  • Lee, Hyoung-Jin;Lee, Bok-Jik;Jeung, In-Seuck;Kim, Seong-Lyong;Kim, In-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.562-570
    • /
    • 2009
  • An Experimental study was conducted on the flow characteristics and interference heating caused by a two-dimensional object protruding from a flat plate using a blow-down type of hypersonic wind tunnel. Inflow condition was a free-stream Mach number of 7.0 and a unit Reynolds number of $2.0{\times}10^6/m$. Experimental conditions were varied with three heights of protuberance for two flat plate models which have different lengths. Experimental data were obtained from Schlieren visualization images and heat flux measurements. Also, this paper suggests hypersonic experimental techniques such as boundary-layer detection method in detail. A Large separation region was observed in front of the protuberance and that region was very sensitive to the height of protuberance and the length of the flat plate. For only the highest protuberance, a severe jump of heat flux was observed at the top station among the measuring points. Measured heat flux is large when the height of protuberance is large and the length of flat plate is long.

Analysis of Thermo-Viscoelastic Residual Stresses and Thermal Buckling of Composite Cylinders (복합재 원통구조물의 열-점탄성적 잔류음력 및 열좌굴 해석)

  • Kim, Cheol;Kim, Yeong-Kook;Choi, Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1653-1665
    • /
    • 2002
  • One of the most significant problems in the processing of composite materials is residual stresses. The residual stresses may be high enough to cause cracking in the matrix even before external loads are applied and can degrade the integrity of composite structures. In this study, thermo-viscoelastic residual stresses occurred in the polymeric composite cylinder are investigated. This type of structure is used for the launch vehicle fuselage. The time and degree of cure dependent thermo-viscoelastic constitutive equations are developed and coupled with a thermo-chemical process model. These equations are solved with the finite element method to predict the residual stresses in the composite structures during cure. A launch vehicle experiences high thermal loads during flight and re-entry due to aerodynamic heating or propulsion heat, and the thermal loads may cause thermal buckling on the structure. In this study the thermal buckling analysis of composite cylinders are performed. Two boundary conditions such as all clamped and all simply supported are used for the analysis. The effects of laminates stacking sequences, shapes and residual stresses on the critical buckling temperatures of composite cylinders are investigated. The thermal buckling analysis is performed using ABAQUS.

Research for Actively Reducing Infrared Radiation by Thermoelectric Refrigerator (열전소자를 이용한 적외선 방사량 감소 기술에 관한 연구)

  • Kim, Hoon;Kim, Kyomin;Kim, Woochul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.199-204
    • /
    • 2017
  • We introduced a technology for reducing infrared radiation through the active cooling of hot surfaces by using a thermoelectric refrigerator. Certain surfaces were heated by aerodynamic heating, and the heat generation processes are proposed here. We calculated the temperatures and radiations from surfaces, while using thermoelectric refrigerators to cool the surfaces. The results showed that the contrast between the radiations of certain surfaces and the ambient environments can be removed using thermoelectric refrigerators.

Aerodynamic Heating Characteristics Over a Protuberance in Hypersonic Flows Using Fast Response Thermo Gauges

  • Lee, Hyoung-Jin;Lee, Bok-Jin;Jeung, In-Seuck;Kim, Seoung-Lyoung;Kim, In-Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.193-200
    • /
    • 2010
  • Through experimental investigations utilizing hypersonic shock tunnel-coaxial thermocouples as well as blow down hypersonic wind tunnel-temperature sensitive paints, the heat flux and the temperature over a protuberance were measured and analyzed. The experimental data were subsequently compared to heat flux data that was obtained by using blow down hypersonic wind tunnel and heat flux gauges. According to the comparison, both sets of data illustrated correlation with one another. The measured heat flux was large when the height of the protuberance was large. Experimental results show that heat flux measurements taken at higher locations were greater than those taken at lower locations. For high protuberances, a severe jump in the heat flux was observed, ranging in values within 0.6-0.7 of the height of the protuberances. However, when the protuberance was sufficiently short, a rise in the heat flux was rarely observed as the protuberance was totally submerged under the separation region.

Bonding Stress Analysis of Cable Fairings used in Small Guided Missiles and Strength Tests of Bonding Materials (유도무기 케이블 페어링의 강도 해석 및 접착재 강도 시험)

  • Goo, N.-S.;Yoo, K.-J.;Shin, Y.-S.;Lee, Y.-H.;Cheong, H.-Y.;Kim, B.-H.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.76-82
    • /
    • 2005
  • Cable fairings of guided missiles are generally used for protection of electric cables under aerodynamic heating and mechanical loading. The stress distributions between a cable fairing and missile main body along a cable fairing are necessary for its design. In this paper, a method for bonding stress and strength analysis of a cable fairing has been investigated and its computer program developed. Tensile and three-point bending tests of generally used bonding materials were also conducted to supply basic material properties for design of cable fairings.

A Numerical Study on the Cooling Characteristics of Seeker Windows for Selecting Efficient Cooling Method (효율적인 냉각 방식 선정을 위한 탐색창 냉각 특성 해석 연구)

  • Kim, Manshik;Lee, Dong Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.246-254
    • /
    • 2017
  • In this paper, cooling characteristics of seeker windows were examined using the Sinda-Fluint software. Various cooling methods were considered to satisfy the limit temperature of the cooled seeker window which would be exposed to excessive aerodynamic heating conditions by varying coolant type and mass flow rate of coolant. Due to the enhanced heat transfer between the coolant and the seeker window, internally cooled seeker window which uses liquid coolant showed lowered temperature distribution in the window compared to internally cooled seeker window which uses gas coolant. External film cooled seeker window also showed good cooling characteristics because it reduces the convective heat flux to the seeker window fundamentally. It was also confirmed that the temperature and the temperature gradient of seeker windows were significantly reduced for the cases which use external film cooling additionally to the gas and liquid cooled seeker window.

Flow Actuation by DC Surface Discharge Plasma Actuator in Different Discharge Modes

  • Kim, Yeon-Sung;Shin, Jichul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2015
  • Aerodynamic flow control phenomena were investigated with a low-current DC surface discharge plasma actuator. The plasma actuator was found to operate in three different discharge modes with similar discharge currents of about 1 mA or less. Stable continuous DC discharge without audible noise was obtained at higher ballast resistances and lower discharge currents. However, even with continuous DC power input, a low-frequency self-pulsed discharge was obtained at lower ballast resistances, and a high-frequency self-pulsed discharge was obtained at higher set-point currents and higher ballast resistances, both with audible noise. The Schlieren image reveals that the low-frequency self-pulsed mode produces a synthetic jet-like flow implying that a gas heating effect plays a role, even though the discharge current is small. The high-frequency self-pulsed mode produces pulsed jets in a tangent direction, and the continuous DC mode produces a steady straight pressure wave. Particle image velocimetry (PIV) images reveal that the induced flow field by the low-frequency self-pulsed mode has flow propagating in the radial direction and centered between the electrodes. The high-frequency self-pulsed mode and continuous DC mode produce flow from the anode to the cathode. The perturbed region downstream of the cathode is larger in the high-frequency self-pulsed mode with similar maximum speeds.

Investigation of thermal deformation of wing skin induced by temperature gradient (온도 구배에 의한 날개 외피의 열변형 특성 연구)

  • Kim, Jeong-Beom;Kim, Hong-Il;Kim, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.896-901
    • /
    • 2015
  • The skin-frame type structure is designed to investigate the thermal deformation of the wing skin induced by the temperature gradient. In order to effectively simulate the temperature gradient on the wing specimen, a water cooling system is devised on the frame of the specimen. Out of surface skin deformation of the skin-frame type structure made of SUS304 material with respect to the temperature is successfully measured using the digital image correlation (DIC) technique including quantitative evaluation of the measurement uncertainty.

Comparison of the Real-time Measurements for PM2.5 and Quality Control Method (PM2.5 자동측정장비 비교 및 정도관리 방안)

  • Park, Mikyung;Park, Jin Su;Jo, Mira;Lee, Yong Hwan;Kim, Hyun Jae;Oh, Jun;Choi, Jin Soo;Ahn, Joon Young;Hong, You Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.616-625
    • /
    • 2017
  • Measurements using five real-time particle samplers were compared to measurements using three NRM (National Reference Method system) filter-based samplers(Gravimetric method) at Incheon, Korea, between May and August, 2014. The purpose of this study was to suggest the quality assurance/quality control (QA/QC) method of each instrument for use in a real-time continuous particle sampler to measure the mass of airborne particles with an aerodynamic diameter less than $2.5{\mu}m$ ($PM_{2.5}$). Five real-time particle samplers of BAM1020, FH62C_14, TEOM, PM-711 and SPM-613 were evaluated by comparing its measured 23 hr average $PM_{2.5}$ concentrations with those measured with NRM filter-based samplers simultaneously. The parameters(e.g. Inlet heating condition, Slope factor, Film response, Intercept, Background, Span value) of the real-time samplers were optimized respectively by conducting test performance evaluation during 7 days in field sampling. For example, inlet heating temperature of TEOM sampler controls $35{\sim}40^{\circ}C$ to minimize the fluctuation of the real-time measurement data and background value of BAM1020 is the key factor affecting the accuracy of $PM_{2.5}$ mass concentration. We classified the $PM_{2.5}$ concentration according to relative humidity (80%) to identify water absorbed in aerosols by measuring the ${\beta}$-ray samplers(BAM1020, FH62C_14) and TEOM. ${\beta}$-ray samplers were not strongly affected by relative humidity that the difference of the average $PM_{2.5}$ concentration was about 5%. On the other hand, The TEOM sampler overestimated $PM_{2.5}$ mass concentration about 15% at low relative humidity (<80%).

Performance Analysis of GPS Antenna for KSLV-I under Hot Temperature Environment (고온 환경에서 KSLV-I 발사체용 GPS 안테나의 성능 분석)

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Choi, Hyung-Don;Jung, Ho-Rac
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.157-164
    • /
    • 2007
  • For a GPS antenna to normally receive GPS satellite signals during full flight mission of a satellite launch vehicle, it should be installed on skin of the vehicle. The surface of a launch vehicle is drastically heated up due to aerodynamic heating effect during flight, so that the GPS antenna mounted on surface of the launch vehicle is directly exposed to extremely hot temperature environment. Hot temperature test specification of the GPS antenna, therefore, is severer than inner components. This paper describes that procedures and results of performance analysis of the GPS antenna for KSLV-I under hot temperature environment. The GPS antenna was not deformed physically and inner LNA(Low Noise Amplifier) operated normally without performance degradation.

  • PDF