• 제목/요약/키워드: Aerodynamic Efficiency

검색결과 341건 처리시간 0.026초

축류송풍기의 설계시 적용된 와류형식의 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Vortex-Type Applied to Design an Axial Flow Fan)

  • 조수용;최범석;오종학
    • 한국유체기계학회 논문집
    • /
    • 제2권3호
    • /
    • pp.7-16
    • /
    • 1999
  • The flow angle at the inlet and exit of a rotor or stator is an important design parameter involved in the design a fan blade. Flow angles along the radial direction for 3-D stacking are calculated using two kinds of vortex methods, i.e. free vortex method and forced vortex method. The performance test shows that a fan designed by the free vortex method is more efficient than a fan designed by the forced vortex method. As a reference, an imported fan is tested. Even though the straightner of the imported fan is used for the comparison test, the difference of efficiency between the imported fan and the fan designed by the free vortex method is negligible. The noise of the fan designed by the free vortex method is less than that of the imported fan. A bellmouth installed at the fan inlet improved the fan efficiency more than $10\%$.

  • PDF

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

스플리터의 코드길이와 피치방향 위치가 천음속 원심압축기의 유동 특성에 미치는 영향에 대한 전산해석적 연구 (Numerical Study on Effects of Splitter Chord Length and Pitchwise Location on the Flow Characteristics in a Transonic Centrifugal Compressor)

  • 이병주;김대현;정진택
    • 한국유체기계학회 논문집
    • /
    • 제19권5호
    • /
    • pp.5-11
    • /
    • 2016
  • The purpose of this study is to design the transonic centrifugal compressor impeller with splitter blades and analyze the flow fields with respect to various splitter blades. Seven impellers with different splitter chord length or pitchwise location were tested by using CFD method. To investigate aerodynamic performance, Mach number distribution and entropy distribution were confirmed. As a result, it is found that the size of transonic region and shock wave location are related to the splitter chord length and pitchwise location. Also the impeller with long chord length of splitter shows higher total pressure ratio but lower efficiency than those of the impeller with short chord length of splitter. In terms of pitchwise location, the impeller with the splitter located in mid-pitch of main blades shows the best performance with respect to pressure ratio and efficiency.

액체로켓용 터빈시스템 설계 (Design of a Turbine System for Liquid Rocket Engine)

  • 최창호;김진한;양수석;이대성;우유철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.145-152
    • /
    • 2000
  • A turbopump system composed of two pumps and one turbine is considered. The turbine composed of a nozzle and a rotor is used to drive the pumps while gas passes through the nozzle, potential energy is converted to kinematic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of turbine system is investigated using compressible fluid dynamic theories with some pre-determined design requirements (i.e., pressure ratio, rotational speed, required power etc.) obtained from liquid rocket engine (L.R.E.) system design. For simplicity of turbine system, impulse-type rotor blades for open type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow rate compared to close-type system. In this study, a partial admission nozzle Is adopted to maximize the efficiency of the open-type turbine system. A design methodology of turbine system has been introduced. Especially, partial admission nozzle has been designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design for a 10 ton thrust level of L.R.E is presented.

  • PDF

세라믹캔들필터 집진 전후 Ash의 크기 및 분포에 관한 연구 (A study on Ash size and its distribution on cleaning of ceramic candle filter)

  • 정진도;이중범;김종영
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1639-1648
    • /
    • 1996
  • Protection of gas turbine blade from its erosion and abrasion at high temperature and pressure is the first goal to cleanup the hot gas upstream for IGCC and PFBC. Ceramic filters represent an attractive technology for particle removal at high temperature and high pressure condition. They have demonstrated being a good system for improvement of thermal efficiency and reduction of effluent pollutants in advanced coal-based power systems such as IGCC and PFBC. Ceramic filter elements currently being developed were evaluated in the previous paper. In this paper, we measured the ash size and distribution on cleaning of ceramic candle filter. The results are as follows : in this experimental range, ceramic candle filter was shown to be fully adequate for the removal process of dust under high temperature and pressure. Also filtration efficiency of ceramic candle filter was higher than 98% compared with the regulation limit of particle size in gas turbine inlet.

축류형 3차원 터빈익형의 성능시험장치 개발 (Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade)

  • 장범익;김동식;조수용;김수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

변성발성장애 환자에 대한 음성치료의 효과 (The Efficiency of Voice Therapy for the Patients with Mutational Falsetto)

  • 표화영
    • 대한후두음성언어의학회지
    • /
    • 제9권2호
    • /
    • pp.134-141
    • /
    • 1998
  • Mutational falsetto is a kind of voice disorders due to the failure to acquire proper low-pitched voice during the puberty. The patients with mutational falsetto can produce the normal low-pitched voice by the surgical treatment, like the type III-thyroplasty, or the voice therapy. The present study is, focusing on the latter treatment, to consider the efficiency of voice therapy for the mutational falsetto. The 7 patients who were diagnosed as mutational falsetto by the laryngologists, and treated by the voice therapist were selected as subjects. Their voices of pretherapy and posttherapy were analyzed on the aspects of acoustics and aerodynamics. Acoustic analysis was done by the MDVP(Multidimensional Voice Program) of CSL(Computerized Speech Lab, Kay Elemetrics, Co.), and aerodynamic analysis, by the Maximum Sustained Phonation of Aerophone II(Kay Elemetrics, Co.). By these measurements, we could find that fundamental frequency(F0) was significantly lowered, on the average, 65Hz. Maximum phonation time(MPT) was increased 4.57 second, and shimmer was decreased 1.644%, respectively, and each changes was statistically significant, too. On the average, jitter was decreased 0.499%, mean flow rate(MFR) was decreased 27.71ml/sec, and NHR was increased 0.023 which was the only parameter not showing improvement. But the changes of jitter, MFR and NHR were not statistically significant.

  • PDF

터빈 냉각설계를 위한 터보팬 엔진의 성능해석 (Performance Analysis of Turbofan Engine for Turbine Cooling Design)

  • 김춘택;이동호;차봉준
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.

스팀터빈의 공력성능 평가를 위한 공기 상사실험 (Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine)

  • 임병준;이은석;양수석;이익형;김영상;권기범
    • 한국유체기계학회 논문집
    • /
    • 제7권5호
    • /
    • pp.29-35
    • /
    • 2004
  • The turbine efficiency is an important factor in power plant, and accurate evaluation of steam turbine performance is the key issue in turbo machinery industry. The difficulty of evaluating the steam turbine performance due to its high steam temperature and pressure environment makes the most steam turbine tests to be replaced by air similarity test. This paper presents how to decide the similarity conditions of the steam turbine test and describes its limitations and assumptions. The test facility was developed and arranged to conduct an air similarity turbine performance test with various inlet pressure, temperature and mass flow rate. The eddy-current type dynamometer measures the turbine-generated shaft power and controls the rotating speed. Pressure ratio of turbine can be controled by back pressure control valve. To verify its test results, uncertainty analysis was performed and relative uncertainty of turbine efficiency was obtained.

속도 오버슈트 발생 시 제한 속도를 초과하지 않는 실속형 블레이드 풍력터빈의 속도제어기 설계 (Design of Speed Controller for Stall Blade Wind Turbine Complying with the Speed Limit During Speed Overshoot)

  • 김예찬;송승호
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.438-445
    • /
    • 2022
  • Blade efficiency decreases when the rotor speed is kept constant even though the wind speed is higher than the rated value. Therefore, a speed controller is used to regulate the rotor speed in the high-wind-speed region. In stall-blade wind turbine, the role of the speed controller is important because precise aerodynamic regulation is unavailable. In this study, an effective parameter design method of a PI speed controller is proposed to limit the speed overshoot of a type 4 wind turbine with stall blades even though wind gust occurs. The proposed method considers the efficiency characteristics of the stall blade and the mechanical inertia of the wind turbine rotor. It determines the bandwidth of the speed controller to comply with the speed limit during generator speed overshoot for the worst case of wind gust. The proposed method is verified through intensive simulations with a MATLAB/SIMULINK model and experimental results obtained using a 3 kW MG set of wind turbine simulator.