• Title/Summary/Keyword: Aerodynamic Effect

Search Result 725, Processing Time 0.026 seconds

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Aerodynamic Characteristics of Long-Span Bridges under Actively Generated Turbulences (능동 난류 생성을 통한 장대 교량의 공력 특성 비교)

  • Lee, Seungho;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.341-349
    • /
    • 2011
  • The main purpose of this study is to investigate the affect of various turbulence properties on aerodynamic characteristics of twin box bridge section. To achieve this goal, active turbulence generator which successfully simulated various target turbulences was developed in the wind tunnel. From the wind tunnel tests, turbulence integral length scale did not affect on the aerodynamic forces and flutter derivatives except for the $A_1^*$ curve. Turbulence intensity gave slight effect on the unsteady aerodynamic force, but turbulence integral length scale did not affect the self-excited forces except vertical direction component.

Numerical Analysis of Aerodynamic Characteristics and Performance Analysis on H-rotor with Various Solidities (솔리디티에 따른 H-로터의 공기역학적 특성 및 성능해석)

  • Joo, Sungjun;Lee, Juhee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.5-13
    • /
    • 2016
  • Three-dimensional unsteady numerical analysis has been performed to observe aerodynamic characteristics of a H-rotor. Generally, the structure of the H-rotor is simple but the aerodynamic characteristics are exceptionably complicated since the angle of attacks and incident velocities to a blade are considerably varied according to the azimuth angles and solidities. The blade in the upwind revolution between 0 to 180 degree obtains aerodynamic energy from the free stream but the blade in the downwind revolution between 180 to 360 degree does not. When the rotating speed increases, the blade in the downwind revolution accelerates the air around the blade like a fan and it consumes the energy and shows negative torque in the area. On the other hand, the direction of the free stream is bent because of the interaction between blade the free stream. Therefore, the operation point (highest power coefficient) appears at a lower tip-speed-ratio what it is expected.

Effects of Incidence on Aerodynamic Losses in the Tip-Leakage Flow Region of a High-Turning Turbine Rotor Blade (입사각이 터빈 동익 팁누설유동 영역에서의 압력손실에 미치는 영향)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of incidence angle on the three-dimensional flow and aerodynamic loss in the tip leakage flow region downstream of a turbine rotor cascade has been investigated for two tip gap-to-chord ratios of h/c=0.0% (no tip gap) and 2.0%. The incidence angle is changed to be $i=-10^{\circ}$, $0^{\circ}$, and $5^{\circ}$. The results show that for $i=5^{\circ}$, secondary flows including the passage vortex are intensified noticeably, and there is a strong interaction between the passage and tip leakage vortices. For $i=-10^{\circ}$, however, the passage vortex is weakened significantly, so that there exists only a strong leakage-jet-like secondary flows near the casing wall. For h/c=0.0% and 2.0%, aerodynamic loss tends to increase with increasing i from $-10^{\circ}$ to $5^{\circ}$. A small increment of i in its positive incidence range results in a remarkable aerodynamic loss increase, while increasing i in the negative incidence range leads to a small change in the aerodynamic loss generation.

Effect of beam slope on the static aerodynamic response of edge-girder bridge-deck

  • Lee, Hoyeop;Moon, Jiho;Chun, Nakhyun;Lee, Hak-eun
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.157-176
    • /
    • 2017
  • 2-edge box girder bridges have been widely used in civil engineering practice. However, these bridges show weakness in aerodynamic stability. To overcome this weakness, additional attachments, such as fairing and flap, are usually used. These additional attachments can increase the cost and decrease the constructability. Some previous researchers suggested an aerodynamically stabilized 2-edge box girder section, giving a slope to the edge box instead of installing additional attachments. However, their studies are limited to only dynamic stability, even though static aerodynamic coefficients are as important as dynamic stability. In this study, focus was given to the evaluation of static aerodynamic response for a stabilized 2-edge box girder section. For this, the slopes of the edge box were varied from $0^{\circ}$ to $17^{\circ}$ and static coefficients were obtained through a series of wind tunnel tests. The results were then compared with those from computational fluid dynamics (CFD) analysis. From the results, it was found that the drag coefficients generally decreased with the increasing box slope angle, except for the specific box slope range. This range of box slope varied depending on the B/H ratio, and this should be avoided for the practical design of such a bridge, since it results in poor static aerodynamic response.

Tip Gap Flow and Aerodynamic Loss Generation over a Cavity Squealer Tip with the Variation of Pressure-Side Opening Length in a Turbine Cascade (스퀼러팁의 압력면 개방길이 변화에 따른 터빈 익렬 팁간극 유동 특성 및 압력손실)

  • Cheon, Joo Hong;Lee, Sang Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2012
  • The effect of pressure-side opening length on three-dimensional flow fields and aerodynamic losses downstream of a cavity squealer tip has been investigated in a turbine rotor cascade for the squealer rim height-to-chord ratio and tip gap height-tochord ratio of $h_{st}/c$ = 5.05% and h/c = 2.0% respectively. The opening length-to-camber ratio is changed to be $OL/c_c$ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7 The results show that longer OL leads not only to weaker secondary flow but also to lower aerodynamic loss in the tip leakage vortex region, while it significantly widens the area with high aerodynamic loss in the passage vortex region. The aerodynamic loss coefficient mass-averaged all over the measurement plane is kept almost constant for $0.0{\leq}OL/c_c{\leq}0.3$, whereas it increases rapidly for $OL/c_c$ > 0.3 in proportion to $OL/c_c$. There is little deterioration in flow turning with increasing $OL/c_c$.

A Numerical Study About the Aerodynamic Characteristics of Elliptic Airfoils (타원형 익형의 공력특성에 관한 수치적 연구)

  • Choe, Seong-Yun;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.1-10
    • /
    • 2006
  • In the present study, the aerodynamic characteristics of elliptic airfoils are investigated numerically based on the RANS equations and the S-A turbulent model on unstructured meshes. Unlike the NACA series airfoil sections, elliptic airfoils have a relatively small leading edge radius and a rounded trailing edge. Also the maximum thickness is located in the middle of the chord. This geometric characteristics are responsible for the difference in the aerodynamic characteristics from those of NACA family airfoils. To identify the aerodynamic characteristics of elliptic airfoils, the results were compared with those of NACA series airfoils with a same maximum thickness. The effect of airfoil thickness variation on the aerodynamic characteristics were also investigated.

Wind-induced Aerodynamic Instability of Super-tall Buildings with Various Cross-sectional Shapes

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The effectiveness of aerodynamic modification to reduce wind loadings has been widely reported. However, most of previous studies have been investigated dynamic forces and pressure distributions on tall buildings with various unconventional configurations. This study was investigated dynamic characteristics and aerodynamic instability of super-tall buildings with unconventional configurations through extensive aeroelastic model experiments. Seventeen types of supertall building models were considered such as basic and corner modification with corner cut, chamfered, oblique opening, tapered, inversely tapered, bulged, helical with twist angles of $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, $360^{\circ}$ and composite with $360^{\circ}$ helical & corner cut, 4-tapered & $360^{\circ}$ helical & corner cut, setback & corner cut, setback & $45^{\circ}$ rotate. As a result, aerodynamic characteristics of helical models with single modification are superior to those of other models with single modification. However, effect of twist angle for helical model is negligible. Further, the 4-tapered & $360^{\circ}$helical & corner cut model is most effective in reducing the along- and across-wind fluctuating displacement responses in all of experimental models.

Flutter Analysis of Multiple Blade Rows Vibrating Under Aerodynamic Coupling

  • Kubo, Ayumi;Namba, Masanobu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.6-15
    • /
    • 2008
  • This paper deals with the aeroelastic instability of vibrating multiple blade rows under aerodynamic coupling with each other. A model composed of three blade rows, e.g., rotor-stator-rotor, where blades of the two rotor cascades are simultaneously vibrating, is considered. The displacement of a blade vibrating under aerodynamic force is expanded in a modal series with the natural mode shape functions, and the modal amplitudes are treated as the generalized coordinates. The generalized mass matrix and the generalized stiffness matrix are formulated on the basis of the finite element concept. The generalized aerodynamic force on a vibrating blade consists of the component induced by the motion of the blade itself and those induced not only by vibrations of other blades of the same cascade but also vibrations of blades in another cascade. To evaluate the aerodynamic forces, the unsteady lifting surface theory for the model of three blade rows is applied. The so-called k method is applied to determine the critical flutter conditions. A numerical study has been conducted. The flutter boundaries are compared with those for a single blade row. It is shown that the effect of the aerodynamic blade row coupling substantially modifies the critical flutter conditions.

  • PDF

Temporary aerodynamic countermeasures for flutter suppression of a double-deck truss girder during erection

  • Zewen Wang;Bokai Yang;Haojun Tang;Yongle Li
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.399-410
    • /
    • 2024
  • Long-span suspension bridges located in typhoon-prone regions face significant risks of flutter instability, particularly in girder erection. Despite the implementation of aerodynamic countermeasures designed for the service stage, the flutter stability of bridge in girder erection may not meet the required standards. Nowadays, the double-deck truss girder is increasingly common in practical engineering which exhibits different performance from the single-deck truss girder. To gain insights into the flutter performance of this girder type and determine temporary aerodynamic countermeasures for flutter suppression in girder erection, wind tunnel tests were conducted. The effects of affiliated members on the flutter performance were first examined. Subsequently, different aerodynamic countermeasures were designed and their effectiveness was tested. The results indicate that the stabilizers above and below the upper and lower decks are the most effective for the flutter stability of bridge at positive and negative angles of attack, respectively. The higher the stabilizers are, the better the effect on flutter suppression achieves. Considering the feasibility in practical engineering, a temporary stabilizer above the upper deck was considered. It is expected that the results could provide references for the aerodynamic design of double-deck truss girder during erection.