• Title/Summary/Keyword: Aerobic composting

Search Result 89, Processing Time 0.029 seconds

Efficiency Investigation of Vanishing Composting Machine Using Exhaust gas Recirculation system (배기가스순환시스템을 적용한 소멸 퇴비화장치의 효율검토)

  • Phae, Chae-Gun;Kim, Jong-Chan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.93-104
    • /
    • 1999
  • Existing composting system was improved to have a high performance for organic degradation, deodorization and energy reduction. Compared with conventional devices, this developed system uses the heat recovered from platinum catalytic tower by three times heat exchange in which 65% of exhaust gas was recirculated. Evaporation of water was made easy by maintaining negative pressure in entire system. It was possible for reaction to be maintained steadily by microorganism agent. The optimum mixing volume ratio of garbage to sawdust was 15:1 contrary to 20:1 in conventional one. Moreover, aerobic condition was maintained efficiently. Effects obtained by using a inner circulation system were as follows. It was possible to reduce the ammonia causing offensive odor and verified that consumption of electricity cut down to 1/3 with reduction of exhaust gas inflowing. According to this inner circulation, the optimum air flow was $0.44m^3$ to 100kg treatment capacity. The electricity consumption was changed in proportion to inflowing air volume.

  • PDF

Changes of Physico-chemical Properties and Microflora of Pig Manure due to Composting with Turning Times and Depth (퇴비 부숙과정중 뒤집기 횟수에 따른 퇴적 깊이별 이화학성 및 미생물상 변화)

  • Lee, Sang-Bok;Kim, Jeong-Goo;Lee, Deog-Bae;Lee, Kyeong-Bo;Han, Sang-Soo;Kim, Jai-Duk;Baek, Seung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.127-135
    • /
    • 2002
  • This study was conducted to investigate the physico-chemical and microbiological properties in profile depth during composting process with different turning times when pig manure was composted with ground rice hulls at the rate of same for the promotion of the composting. The moisture contents, C/N rate and pH value decreased according to composting progresses as run into turning times, but increased those inside layer of the pile. $NH_4-N$ and $NO_3-N$ contents were high in the outer layer mostly, as the result the $NH_3$ flux was high in there, but it decreased as composting progresses. The number of aerobic bacteria were $10^7{\sim}10^9\;cfu\;g^{-1}$, increased as the turning times, the number of their showed high in the outer layer. The number of fungi were $10^2{\sim}10^4\;cfu\;g^{-1}$ at the early period of composting, but did't almost survive inside layer as composting progresses. The number of cellulose decomposer and thermophilic bacteria were $10^6{\sim}10^7\;cfu\;g^{-1}$ and $10^6{\sim}10^9\;cfu\;g^{-1}$, respectively, they showed high inside layer of the pile. Therefore, the turning of composting can reduce the change difference of microorganisms in the pile. Turning frequence for the promotion of composting showed approximately 2~3 times.

Piggery Slurry Composting Using Batch Operating Autothermal Thermophilic Aerobic Digestion System

  • Ahn, Hee K.;Choi, Hong L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.273-279
    • /
    • 2006
  • The performance of an autothermal thermophilic aerobic digestion (ATAD) system was studied to determine if nitrogen loss, as ammonia, was affected by an exhaust gas condenser. The system was run with and without a condenser while treating $8m^3$ of piggery slurry for 8 days. The system with a condenser (SWC) maintained the reactor temperatures above $40^{\circ}C$ for 2 days during the 8 days run, while the system without a condenser (SWOC) remained above $40^{\circ}C$ for 6 days. The SWC maintained the reactor temperatures mostly at mesophilic conditions while the SWOC at thermophilc conditions. Differences in operation conditions for the two runs were mainly caused by differences in atmospheric temperatures. Soluble chemical oxygen demand (SCOD) and volatile solids (VS) removal efficiencies of the SWC (SCOD: 62%, VS: 41%) were higher than those of the SWOC (SCOD: 40%, VS: 20%). The total Kjeldal nitrogen (TKN) removal efficiency of the SWC (7%) was less than that of the SWOC (25%). The concentration of total volatile fatty acids (VFA) in the SWC was observed to be lower than the threshold value of 0.23 g total VFA/L after 6 days, while the SWOC progressed below the threshold value after 3 days. No offensive odor emissions were observed in either run, which suggest that the use of the ATAD system may be a good odor removal strategy.

Effect of Vermiculite Addition on Composting of Compostable Household Wastes in a Small Bin (가정용 소형 발효용기에 의한 음식물쓰레기 퇴비화과정 중 질석의 첨가효과)

  • Seo, Jeoung-Yoon;Heo, Jong-Soo;Han, Jong-phil;Park, Ju-Won;Hwang, Myun-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.131-140
    • /
    • 2000
  • Compostable household wastes(mainly food residues) were composted in a small bin for 30 days, in which compostable household wastes were fed every day and mixed thoroughly under aerobic conditions. Three small bins were employed. In the first bin only recycled compost was composted, in the second, compostable household wastes with recycled compost, and in the third compostable household wastes with recycled compost and vermiculture. The correct decomposition rate of each composting material was calculated during composting. Total reduced rate of the weight after 30 days was 57.32% when composting the compostable household wastes with recycled compost, and 64.71% when composting them with recycled compost and vermiculite. In the case of composting the compostable household wastes with the recycled compost, the total weight reduction rate for a day was 6.81% and the total decomposition rate 6.81%. Their difference was not great. But in the case calculated with only compostable household wastes the total weight reduction rate was 56.34% and the decomposition 6.79%. When compostable household wastes were composted with the recycled compost and vermiculite, the total weight reduction rate was 64.99% and the decomposition rate 1.48%, but the total weight reduction 4.36% and the decomposition rate 35.46% when calculated with only compostable household wastes. MgO, $K_2O$ and Cr concentrations in the composting mixture during the early composting time were higher when composted with vermiculite than without it, but organic matter, CaO, NaCl, and $P_2O_5$ concentrations were contrarily diluted because of their lower concentration of vermiculite when compostable household wastes were composted with vermiculite.

  • PDF

A Study on Aerobic Composting of Food Waste with Controlling Temperature by Air Flow Rate (온도를 공기량으로 제어한 음식물 쓰레기 호기성 퇴비화에 관한 연구)

  • Hwang, Seon-Hyeon;Sin, Chang-Ho;Sin, Bu-Yeong;Jo, Mu-Hwan
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.621-627
    • /
    • 1999
  • A food waste composting apparatus of 450 L was designed for and tested with changing conditions of inlet air flow rate, agitation and inoculation. Agitation was done twice per day for 5 min and inlet air flow rate was set as 22.7 L/min for RUN 1. For RUN 2 and RUN 3, agitation was continuous, and inlet air flow rate was changed frequently as 10 L/min, 15 L/min and 20 L/min in order to maintain temp. above 5$0^{\circ}C$, and the concentration of $O_2$over 7 mol%. The compost of RUN3 was inoculated with 10 wt% of accomplished compost, and it was compared with RUN 1 and 2 to show the effect of inoculation. The composting rates of RUN 2 and RUN 3 were faster than that of RUN 1, because agitation was continuous and temperature was controlled in RUN 2 and RUN 3. Inoculated RUN 3 was better than RUN 1 and RUN 2 in the concentrations of $CO_2$and reduction of volatile solids. while the effect of inoculation on C/N ratios, pH change and the numbers of microoragnisms was not clearly appeared.

  • PDF

Medium characteristics during the outdoor-composting stage of medium preparation with a prototype medium turner in button mushroom cultivation (양송이 배지교반기 시제품을 활용한 배지 조제시 야외 발효단계별 배지의 특성)

  • Lee, Chan-Jung;Yu, Byeong-Kee;Lee, Eun-Ji;Park, Hae-Sung;Kong, Won-Sik;Kim, Yeong-Ho
    • Journal of Mushroom
    • /
    • v.16 no.1
    • /
    • pp.45-50
    • /
    • 2018
  • This study was performed to compare medium characteristics during the composting stage for medium turning performed using an excavator agitator and a prototype medium turner in button mushroom cultivation. The changes in temperature in the medium did not significantly differ between the treatments until the 3rd turn performed using the excavator agitator. However, during the 4th and 5th turns, the temperature increased during turning with the prototype medium turner. During outdoor composting, various types of microorganisms such as thermophilic bacteria (Bacillus spp.), Actinomycetes, fluorescent Pseudomonas spp., and filamentous fungi were found to be distributed in the medium. The counts of aerobic bacteria and fluorescent Pseudomonas spp. did not significantly differ between treatments, and the counts of thermophilic bacteria and thermophilic actinomycetes were slightly higher during turning with the prototype medium turner. The rice straw was slightly shorter and water content lower for the prototype medium turner. There was no significant difference between pH and EC treatments. The L, a, and b values tended to increase on turning with the prototype medium turner.

Changes of Physico-chemical Properties of paper Mill Sludge amended with Pig Manure in Composting Process (제지슬러지와 돈분을 이용한 퇴비화 과정중 이화학적 특성 변화)

  • Min, Kyoung-Hoon;Chang, Ki-Woon;Yu, Young-suk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.86-92
    • /
    • 2000
  • This study was conducted to determine the optimal mixing ratio of the paper mill sludge(PMS) and pig manure(PM). Since the former contains lots of total carbon and low nitrogen, it was used as carbon source. Also, dried paper mill sludge(DPMS) was added to the mixture to control the water content. The treatments was composed of four as follows, PMS-100(PM 0%+PMS 80%+DPMS 20%), PMS-85(15+65+20), PMS-70(30+50+20), and PMS-55(45+35+20). The mixtures were composted under aerobic condition in $1.25m^3$ static piles. The piles were aerated for 15 minutes per day and turned over the mixture once a week at the early stage of composting. To estimate the maturity of composts, the changes of physico-chemical properties such as temperature, pH, C/N ratio and color were monitored every week. The 25-30 and 55-60% as optimal condition of C/N ratio and moisture content were respectively recommended for effective composting by the evaluation of the changes of phsico-chemical properties for materials taken from compost files during the composting period. When the 30 and 45% of PM were mixed with PMS, the maturity time at least demanded to the stable state were shortened and the qualify of the final product was improved in a view of nutritional components.

  • PDF

The Study of Reuse, Putting the Bulking Agent into Food Waste and Livestock Feces (음식물쓰레기와 축산폐기물에서 Bulking agent의 재이용에 관한 연구)

  • Kim, S.B;Choi, H.G;O, G.J;Yang, C.O;Lee, S.G
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.127-135
    • /
    • 2001
  • Achieved to grasp possibility to use compost that make food waste and sawdust (bulking agent) by raw material in this research droopingly to bulking agent calamity. To be kept by aerobic experiment method to 4 composting device that air is supplied Food Waste + Sawdust, Livestock Feces + Sawdust, Food Waste + Compost, Livestock Feces + Compost free medical care and investigated composting sledding and temperature, pH, the moisture rate, heavy metals item etc. Judged that food waste of the moisture rate mix experiment result food waste input (food waste and sawdust composting done material mean) compost happened after resources anger as bulking agent food waste and Livestock Feces quantity is 72~77%, because axis dries to promote optimum composting progress appearing by 64~65%, thing which use need and was difficult to set salt 1% that is by-product compost standard when use compost as bulking agent of food waste but by dilution effect of Livestock Feces quantity using compost being expose that preservation is available by standard low because salt content density of done compost becomes found possibility that can solve salt content problem.

  • PDF

Production of Compost Using Organic wastes

  • Lee, Jang-Hoon;Jung, Joon-Oh;Kwon, Hyuk-Ku;Nam, Youn-Ku;Yun, Jung-Won
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.406-409
    • /
    • 2005
  • Since 2003, Korean government has restricted landfill application of organic waste, which shares approximately 56% of total waste sludge from municipal and industrial wastewater treatment plants. In addition, enforcement of the ocean disposal prohibition law is effective from 2005. Organic sludge was composted for the purpose of converting to organic fertilizer. After moisture content was regulated with bulking agents aerobic treatment performed. When composting was conducted, commercial and activated microbe materials, identified from soil were seeded in sewage sludge. Carbon dioxide production was increased sharply after 24 hours. Temperature and pH of compost reached to $66.2^{\circ}C$ and 8. Heavy metals were lower than their regulatory limits, which enable it to utilize as organic fertilizer.

  • PDF

Isolation and Characterization of Thermophilic Bacteria for Aerobic Decomposition of Food Waste (음식물 쓰레기의 호기성분해를 위한 고온균의 분리 및 생육 특성)

  • Choi, Min Ho;Cho, Sung Eun;Yoo, Jung Mok;Chung, Yoon Jin;Park, Yun Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.1
    • /
    • pp.21-34
    • /
    • 1995
  • For development of microbial additives applicable to in-vessel composting system of food waste, thermophilic bacteria which showed amylase, protease, lipase and cellulase activity were isolated from soil, compost and food waste. Among 81 isolates, the growth characteristic of 20 strains with high enzyme activity were examined. All strains are Gram positive rod with catalase activity and 17 strains are spore formers. At $50^{\circ}C$, most of the strains were able to grow from pH 5 to pH 10 and in presence of 8% of NaCl. In trypticase soy broth, the growth of these strains was greatly increased by aeration, but decreased at elevated temperature above $50^{\circ}C$.

  • PDF