• 제목/요약/키워드: Aerobic Biofilm

검색결과 60건 처리시간 0.021초

호기성 생물막을 이용한 HRT 변화에 따른 오염물질 제거 (Pollutant Removal in Variable HRT Using the Aerobic Biofilm)

  • 안광호;고광백;김이태;김광수
    • 한국환경과학회지
    • /
    • 제21권12호
    • /
    • pp.1495-1501
    • /
    • 2012
  • In this study, an experiment was conducted on influent water with low concentrations of organic matter, such as river water or secondary treatment water of a sewage treatment plant, according to HRT changes by using aerobic biofilm. In the biofilm process, as the biofilm increases in thickness, the inner membrane can be low in oxygen transfer rate and become anaerobic conditions, while the detachment of biomass from biofilm occurs. To overcome these limitations in the detachment of microorganisms in biofilm, the yarn, which was made from poly propylene(PP), was weaved and manufactured into a tube. Then, a test was carried out by injecting air so that the interior of the biofilm could create aerobic conditions. The results of the experiment showed that the removal efficiency of $TCOD_{cr}$ reached 66.1~81.2% by HRT 2hr, and 50.9 ~61.8% after HRT 1 hr. The removal efficiency of $SCOD_{cr}$ was 45.9 to 55.1% by HRT 1hr, and 26.1% in HRT 0.5hr, showing the highest removal efficiency in HRT 1hr. The SS removal efficiency was at 81.8 to 94.6%, and the effluent SS concentration was very low, indicating less than 2.2 mg/L in all HRT's. As a result, the $SCOD_{cr}$ and $NH_4{^+}$-N that were removed per specific surface area and attached to microbial biofilm showed the highest efficiency in HRT 1hr with 8.37 $gSCOD_{cr}/m^2{\cdot}d$, 2.93 $gNH_4{^+}-N/m^2{\cdot}d$. From the result of reviewing the characteristics of biofilm growth, microorganisms were found to be attached, and increased by 36 days. Later, they decreased in number through detachment, but showed a tendency to increase again 41 days later due to microbial reproduction.

Correlationship of Vertical Distribution for Ammonia Ion, Nitrate Ion and Nitrifying Bacteria in a Fixed Bed Nitrifying Biofilm

  • Choi, Gi-Chung;Byun, Im-Gyu
    • 한국환경과학회지
    • /
    • 제21권12호
    • /
    • pp.1455-1462
    • /
    • 2012
  • The vertical distributions of nitrifying bacteria in aerobic fixed biofilm were investigated to evaluate the relationship between nitrification performance and microbial community at different HRT. Fluorescent in situ hybridization (FISH) and portable ion selective microelectrode system were adopted to analyze microbial communities and ions profiles according to the biofilm depth. Cilia media packed MLE (Modified Ludzack-Ettinger) like reactor composed of anoxic, aerobic I/II was operated with synthetic wastewater having COD 200 mg/L and $NH_4{^+}$-N mg/L at HRT of 6 hrs and 4 hrs. Total biofilm thickness of aerobic I, II reactor at 4 hrs condition was over two times than that of 6 hrs condition due to the sufficient substrate supply at 4 hrs condition (6 hrs; aerobic I 380 ${\mu}m$ and II 400 ${\mu}m$, 4 hrs; aerobic I 830 ${\mu}m$ and II 1040 ${\mu}m$). As deepen the biofilm detection point, the ratio of ammonia oxidizing bacteria (AOB) was decreased while the ratio of nitrite oxidizing bacteria (NOB) was maintained similar distribution at both HRT condition. The ratio of AOB was higher at 4 hrs than 6 hrs condition and $NH_4{^+}$-N removal efficiency was also higher at 4 hrs with 89.2% than 65.4% of 6 hrs. However, the ratio of NOB was decreased when HRT was reduced from 6 hrs to 4 hrs and $NO_2{^-}$-N accumulation was observed at 4 hrs condition. Therefore, it is considered that insufficient HRT condition could supply sufficient substrate and enrichment of AOB in all depth of fixed biofilm but cause decrease of NOB and nitrite accumulation.

세라믹 담체를 이용한 안료폐수의 호기성처리 (Aerobic Treatment of Pigment Wastewater using Ceramic Support Carrier)

  • 박영식;안갑환
    • 한국환경과학회지
    • /
    • 제10권4호
    • /
    • pp.281-286
    • /
    • 2001
  • Wastewater from the pigment industry has high levels of organics and is known as hardly biodegradable. The objective of this study is to evaluate the applicability of aerobic fixed-bed boifilm reactor packed with ceramic support carrier for the pigment wastewater treatment. Orange 2(widely used azo pigment) adsorption experiment onto biofilm and activated sludge, and continuous treatment experiments were performed. In batch adsorption experiment, maximum adsorption quantity of biofilm was at least two times higher than that of activated sludge. In continuous experiment using aerobic fixed-bed biodilm reactor, the influent concentration of COD and Orange 2 were 75~500mg/${\ell}$(0.45~3.00kg COD/$m^3.day), 5~50mg/$\ell$(0.03~0.30kg Orange 2/$m^3$.day), respectively. At a COD loading rate 2.5kg COD/$m^3$.day and Orange 2 loading rate of 0.18kg Orange 2/$m^3$.day, removal efficiency of COD and Orange 2 were over 95%, 97%, respectively.

  • PDF

호기성 고정생물막 반응조에서 인의 제거 (Removal of Phosphorus in Aerobic Fixed Biofilm Reactor)

  • 임재명;한동준;우영국
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.5-11
    • /
    • 1996
  • While the enhanced biological phosphorus removal(EBPR), in anaerobic/aerobic condition, was known to remove phosphorus by means of metabolism of poly-P microorganisms, the phosphorus removed could be released in the form of ortho-P in the aerobic fixed biofilm reactor. This study was initiated to investigate the cause of ortho-P release in the aerobic fixed biofilm reactor. The resutls indicated that the phosphorus release was caused by autooxidation. The synthesis and release of phosphrous were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was $0.023mgP_{syn}/mgCOD_{rem}$. The phosprous contents of the microorganism were 4.3 ~ 6.0% on a dry weight basis.

  • PDF

무산소/호기생물막반응조와 MF막의 연속처리에 의한 퍼클로레이트와 질산염 제거 (Sequential Anoxic/Aerobic Biofilm Reactors and MF Membrane System for the Removal of Perchlorate and Nitrate)

  • 최혁순
    • 대한환경공학회지
    • /
    • 제35권5호
    • /
    • pp.301-306
    • /
    • 2013
  • 본 연구는 퍼클로레이트($ClO_4{^-}$)와 질산염($NO_3{^-}$)의 직접적인 처리방법으로 무산소/호기생물막반응조와 MF막에 의한 연속처리의 적용 가능성을 조사하였다. 생물막 처리공정은 첫 번째 단계로 퍼클로레이트와 질산염의 제거를 위해 무산소생물막반응조를 이용하였고 두 번째 단계로 이화적 퍼클로레이트와 질산염 환원을 위해 사용된 잔류탄소원의 제거를 위해 호기생물막반응조가 도입되었다. 그리고 마지막 단계로 탁도제거를 위해 중공사형 MF막을 적용하였다. 본 연구에서 102 ${\mu}g/L$ $ClO_4{^-}$와 61.8 mg/L $NO_3{^-}$ (14 mg/L $NO_3$-N)가 유입수로 주입되어 퍼클로레이트는 IC 검출농도 이하(5 ${\mu}g/L$ $ClO_4{^-}$)로 제거되었으며 질산염은 최종 처리수의 농도가 4.4 mg/L $NO_3{^-}$ (1 mg/L $NO_3$-N)로 제거되었다. 탄소원으로 사용된 과잉의 179 mg/L 유입 $CH_3COO^-$는 무산소생물막반응조의 유출수에서 117 mg/L, 호기생물막반응조의 유출수에서 11 mg/L로 감소하였다. 3 NTU의 유입 탁도는 무산소/호기생물막반응조의 유출수에서 1.5와 0.3 NTU였으며 최종 MF막의 유출수에서 0.2 NTU였다. 이 결과는 지표수와 지하수에 포함된 저농도 퍼클로레이트와 질산염 오염의 직접적인 처리방법으로 무산소/호기생물막반응조와 MF막의 연속처리가 적용될 수 있음을 의미하는 것으로 사료된다.

외부탄소원을 사용한 SBBR의 공정 특성 및 질소제거 (Evaluation of SBBR Process Performance Focused on Nitrogen Removal with External Carbon Addition)

  • 한혜정;윤주환
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.566-571
    • /
    • 2006
  • A sequencing batch biofilm reactor (SBBR) operated with a cycle of anaerobic - aerobic - anoxic - aerobic has been evaluated for the nutrient removal characteristics. The sponge-like moving media was filled to about 10% of reactor volume. The sewage was the major substrate while external synthetic carbon substrate was added to the anoxic stage to enhance the nitrogen removal. The operational results indicated that maximum T-N and T-P removal efficiencies were 97% and 94%, respectively were achieved, while COD removal of 92%. The observations of significant nitrogen removal in the first aerobic stage indicated that nitrogen removal behaviour in this SBBR was different to conventional SBR. Although the reasons for aerobic nitrogen removal has speculated to either simultaneous nitrification and denitrification or anoxic denitrification inside of the media, further researches are required to confirm the observation. The specific oxygen uptake rate (SOUR) test with biofilm and suspended growth sludge indicated that biofilm in SBBR played a major role to remove substrates.

이온선택성 미소전극을 이용한 질산화 생물막내의 질소 이온의 농도 모니터링 (Monitoring of Nitrogen Ion in Nitrifying Biofilm using an Ion Selective Microelectrode)

  • 선지윤;변임규;이태호;박태주
    • KSBB Journal
    • /
    • 제25권1호
    • /
    • pp.85-90
    • /
    • 2010
  • An ion selective microelectrode (ISME) was fabricated to measure concentrations of ammonium (${NH_4}^+$-N) and nitrate (${NO_3}^-$-N) according to the depth of nitrifying biofilm. The limits of detectability and validity of results were investigated to evaluate the ISME. The electromotive force (EMF) was directly proportional to the ion concentration, and average detection limits of ${NH_4}^+$ and ${NO_3}^-$ ISME were $10^{-5.14}$ and $10^{-5.18}$ M, respectively. The concentrations of ${NH_4}^+ $-N and ${NO_3}^-$-N in various depths on the nitrifying biofilm were measured by the ISME. When a modified Ludzack-Ettinger (MLE) process was operated at an HRT of 6 h, concentration gradients of ${NH_4}^+$-N in the bulk solution and biofilm at depths of $100\;{\mu}m$ decreased by $70\;{\mu}M$, while ${NO_3}^-$-N increased by $101\;{\mu}M$ and remained constant thereafter. At an HRT of 4 h, concentration gradients of ${NH_4}^+$-N at depths of $500\;{\mu}m$ decreased by $160\;{\mu}M$ and ${NO_3}^-$-N increased by $162;{\mu}M$ and remained constant thereafter. As HRT decreased, the concentration gradients of ${NH_4}^+$-N and ${NO_3}^-$-N between bulk solution and biofilm was higher due to the increase of nitrogen load. Also, the concentration gradients of the ${NH_4}^+$-N and ${NO_3}^-$-N of biofilm in the second aerobic tank were lower than those of the first aerobic tank, suggesting differences of nitrogen load and concentrations of DO between the first and second aerobic tank.

Pilot 혐기-호기 공정을 이용한 염색폐수의 생물학적 처리 (Biological Treatment of Textile Wastewater by Anaerobic-Aerobic Reactor System)

  • 박영식;안갑환
    • 한국환경보건학회지
    • /
    • 제27권3호
    • /
    • pp.11-20
    • /
    • 2001
  • An anaerobic sludge-aerobic fixed-bed biofilm(packed with ceramic support carrier of 1 inch size) reactor system was built up to treat textile wastewater. The efficiency of reactor system was examined by determining the effects of textile wastewater ratio(from 25% to 100% at HRT 24 h). The influent range of SCOD concentration and color were 1,036~1,357 mg/L, and 1,487~1,853 degree, respectively. When textile wastewater ratio was 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% and the removal efficiency of the whole system were 75.8%. Color removal efficiency by the anaerobic stage were 45.4%(soluble color), and the removal efficiency of the whole system were 70.2%. In the A/A reactor system, the aerobic stage played an important role in removing both color and COD as well as anaerobic stage.

  • PDF

혐기성 슬러지 공정과 호기성 고정생물막 공정을 이용한 염색폐수 처리 (Treatment of Textile Wastewater by Anaerobic Sludge and Aerobic Fixed-Bed Biofilm Reactor)

  • 박영식;문정현
    • 한국환경보건학회지
    • /
    • 제28권3호
    • /
    • pp.55-63
    • /
    • 2002
  • This study was carried out to treat textile wastewater using anaerobic sludge and aerobic fixed-bed biofilm reactor immobilized with Bacillus sp. dominated activated sludge(Bacillus sp. fraction : 81.5%). The range of influent con-centration of SCOD and soluble color were 1032-1507 mg/1, and 1239-1854 degree, respectively. Continuous treatment experiments were performed with variation of textile wastewater ratio at a same HRT. When textile wastewater ratio was 100%(HRT : 24 hours), The removal efficiency of SCOD and soluble color were 88% and 78%, respectively. When compare aerobic reactor of this study that was immobilized with Bacillus sp. dominated activated sludge to other study that was immobilized with activated sludge, SCOD and soluble color removal efficiency of this study showed a little higher efficiency than immobilized with activated sludge. The Bacillus sp. fraction of initial condition was 81.5%), but the fraction after operation was decreased to 31.8%).

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.