• Title/Summary/Keyword: Aero System

Search Result 210, Processing Time 0.03 seconds

EXPERIMENTS FOR VALIDATING NUMERICAL ANALYSIS USING ADVANCED FLOW VISUALIZATION TECHNOLOGIES (첨단 유동가시화 기술을 이용한 수치해석 검증용 실험)

  • Lee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.14-17
    • /
    • 2008
  • Recently, several advanced flow visualization techniques such as Particle Image Velocimetry (PIV) including stereo PIV, holographic PIV, and dynamic PIV have been developed. These advanced techniques have strong potential as the experimental technology which can be used for verifying numerical simulation. In addition, there would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the basic research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is difficult for conventional methods to observe most complicated nano- and bio-fluidic phenomena. In this paper, the basic principle of these advanced visualization techniques and their practical applications which cannot be resolved by conventional methods, such as flow in automotive HVAC system, ship and propeller wake, three-dimensional flow measurement in micro-conduits, and flow around a circulating cylinder will be introduced.

  • PDF

Computational Study on the Heat Transfer Prediction Hypersonic Flows (극초음속 유동의 열전달 예측에 관한 수치해석적 연구)

  • Nagdewe, Suryakant;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environments during their flight regimes. One of the most important topics of research in hypersonic aerodynamics is to find a reasonable way of calculating either the surface temperature or the heat flux to surface when its temperature is held fixed. This requires modeling of physical and chemical processes. Hyperbolic system of equations with stiff relaxation method are being identified in recent literature as a novel method of predicting long time behavior of systems such as gas at high temperatures. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flow over a 2-D cylinder. Present heat flux results over the cylinder compared well with the experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF

Computation of Serrated Trailing Edge Flow and Noise Using a Hybrid Zonal RANS-LES (혼합 영역 RANS-LES를 이용한 톱니 뒷전 유동 및 소음장의 계산)

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.444-450
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

Analysis on Power Burden of HTSC Module due to Fault Current's Amplitude of a Flux-Lock Type SFCL with Two Triggering Currents (두 트리거 전류를 갖는 자속구속형 초전도한류기의 고장전류 크기에 따른 초전도 모듈의 전력부담 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.424-428
    • /
    • 2016
  • In this paper, the power burden of High-TC superconducting (HTSC) module comprising the flux-lock type superconducting fault current limiter (SFCL) with two triggering currents during the fault period was analyzed. The short-circuit tests for the simulated power system with the SFCL in the different fault positions, which were expected to affect the amplitude of the fault current, were carried out. Through the comparative analysis on the power burden of the HTSC modules, the proposed flux-lock type SFCL was confirmed to be effective to divide into two power burdens according to the amplitude of the fault currents.

Floating offshore wind turbine system simulation

  • Shi, Wei;Park, Hyeon-Cheol;Jeong, Jin-Hwa;Kim, Chang-Wan;Kim, Yeong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.466-472
    • /
    • 2009
  • Offshore wind energy is gaining more and more attention during this decade. For the countries with coast sites, the water depth is significantly large. This causes attention to the floating wind turbine. Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structures. In this work, a three-bladed 5MW upwind wind turbine installed on a floating spar buoy in 320m of water is studied by using of fully coupled aero-hydro-servo-elastic simulation tool. Specifications of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Certain design load case is investigated.

  • PDF

Analysis of focus error signals on land/groove recordable optical disks (랜드/그루브 기록 광디스크에 대한 포커스 에러 신호 분석)

  • 이용재;박병호;신현국
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.73-79
    • /
    • 1997
  • We analyzed the variation of the focus error signal with the effect of land and groove, wavefront error, and optical system parameter variation for the knife-edge and astigmatism methods on the Land/Groove recordable optical disc, using a numerical simulation method. We verified causes of the zero-cross-shift that took place by the effect of land and groove by analyzing the diffraction beam including defocus wavefront errors. We also found that the sensitivty of the focus error signal was reduced by the effect of land and groove in the astigmatism method, as in the analysis of the focus error signal with the each order of the diffraction beam.

  • PDF

Overview and Implication of Technical Trend of New High-speed Train in the World (세계 고속열차 기술개발 동향과 시사점)

  • Park, Choon-Soo;Kim, Ki-Whan;Kim, Sang-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.862-867
    • /
    • 2008
  • High-speed railway is important transportation in the world because it is very comfortable, environmental benefits, energy savings, etc. The increase of demand for high-speed railway influence to develop of new hish-speed trains. Many countries introduced new high-speed train in the market. It meets to the market's needs. They adopt new technology and systems like that active suspension, synchronous permanent magnetic motor, distributed drive system, aero acoustics, etc. In Korea, the project for R&D of new high-speed train is launched last year. We need analysis of technical trend of new high-speed trains in the world. This paper presents a overview of technical trend of new high speed trains and what is key issues in development of high-speed train. It is very useful to develop a next generation high-speed train in Korea.

  • PDF

Cystic Changes in Lymph Nodes with Metastatic Squmous Cell Carcinoma (낭종성 측경부전이를 동반한 두경부 편평상피암 2례)

  • 김민식;선동일;이시형;조승호
    • Korean Journal of Bronchoesophagology
    • /
    • v.5 no.1
    • /
    • pp.96-101
    • /
    • 1999
  • For many years it has been reported that seemingly benign neck cysts may contain carcinoma. Cystic metastases have often mistaken for either branchial cleft cysts or benign mass. Authors experienced two cases which presents cystic cervical metastatic cancer One was a tonsillar carcinoma and the other was a tongue carcinoma. Patients with a cystic squamous carcinoma in the neck likely have a primary in upper aero-digestive system and It is known that the tonsil is most common site. Radiologic examination and fine needle aspiration biopsy of the cyst proved to be non-diagnostic. The development of cervical lymph node metastases before clinical signs of carcinoma of the tonsil is also well recognized. So, in old patients, thorough head If neck examination, panendoscopy and ipsilateral tonsillectomy is mandatory to identify a primary carcinoma prior to cyst excision.

  • PDF

A numerical parametric study on hydrofoil interaction in tandem

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.25-40
    • /
    • 2015
  • Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid.

Numerical Prediction of Thermoacoustic Instability in Rijke Tube Using Non-linear Model for Heat Source (비선형 열원모델을 이용한 Rijke tube 내열음향 불안정 곡선의 수치예측기법)

  • Song, Woo-Seog;Lee, Seung-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2524-2529
    • /
    • 2008
  • The thermal system like a combustion chamber is believed to experience a significant instability problem with vibration in case that the thermal energy or the acoustic energy are transformed into a different form through a relevant path. This study deals with a numerically- predicted, Thermoacoustic instability in a Rijke tube by using a non-linear model for a heat source. The heating part where the energy transformation occurs actively is modeled after simulating two-dimensional cylinder case with constant surface temperature, and a nonlinear model that accounts for the transfer function of magnitude- and phase-characteristics is properly implemented so as to be dependent on the pulsation strength in the tube. The heat source model is observed to result in equivalent Thermoacoustic instabilities in the Rijke tube except low flow-rate cases in which the natural convection is dominant.

  • PDF