• Title/Summary/Keyword: Aerial vehicle systems

Search Result 236, Processing Time 0.024 seconds

Analysis on Flight Test Results of Reconfiguration Flight Control System (재형상 비행제어 시스템의 비행시험 결과 분석)

  • Min, Byoung-Mun;Kim, Seong-Pil;Kim, Bong-Ju;Kim, Eung-Tai;Tahk, Min-Jea
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1244-1252
    • /
    • 2008
  • This paper presents the analysis results obtained by the flight test of reconfiguration flight control system for an aircraft. The reconfiguration flight control system was designed by using control allocation scheme that automatically distributes the demanded control moments determined by control law to each actual control surface. In this paper, some control allocation algorithms for reconfiguration control of general aircraft with redundant control surfaces are summarized and their performance evaluation results through nonlinear simulation and Hardware-In-the-Loop-Simulation (HILS) test are shown. Also, Unmanned Aerial Vehicle (UAV) system adopted as a platform for the flight test of reconfiguration flight controller and the implementation procedure of reconfiguration flight controller into real-time UAV system were introduced. Finally, flight test results were analyzed.

Multi-UAV Formation Based on Feedback Linearization Technique Using Range-Only Measurement (거리 정보를 이용한 되먹음 선형화 기법 무인기 편대 비행제어)

  • Kim, Sung-Hwan;Ryoo, Chang-Kyung;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • This paper addresses how to make a formation of multiple unmanned aerial vehicles (UAVs) using only the relative range information. Since the relative range can easily be measured by an on-board range sensor like the laser range finder, the proposed method does not require any expensive and heavy wireless communication system to share the navigation information of each vehicle. Based on the two-dimensional (2-D) nonlinear equations of motion, we propose a nonlinear formation controller using the typical input-output feedback linearization method. The performance of the proposed formation controller is verified by various numerical simulations.

UAV Altitude and Attitude Estimation Method Using Stereo Vision (스테레오 비전를 이용한 무인기 고도 및 자세 추정기법)

  • Jung, Ha-Hyoung;Lee, Jun-Min;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • This paper presents the implementation of altitude and attitude measurement algorithm using stereo camera for an unmanned aerial vehicle (UAV). Depth images are generated by calibrating the stereo cameras, and converted into 3D point cloud data. By applying a plane fitting algorithm to the resultant point cloud, altitude from ground level, and roll and pitch angles are extracted. To verify the performance, experimental results are provided by comparing with those of the motion caption system.

Daisy Chain Method for Control Allocation Based Fault-Tolerant Control

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.265-272
    • /
    • 2013
  • This paper addresses a control allocation method for fault-tolerant control by redistributing redundant control surfaces. The proposed method is based on a classical daisy chain approach for the compensation of faulty actuators. The existing daisy chain method calculates a desired moment according to a number of actuator groups. However, this method has a significant limitation; that is, any faulty actuator belonging to the last actuator group cannot be compensated, since there is no more redundant actuator group that can be used to generate the required moments. In this paper, a modified daisy chain method is proposed to overcome this problem. Using the proposed method, the order of actuator groups is readjusted so that actuator groups containing any faulty actuator are always placed in an upper group instead of the last one. A set of simulation results with an F-18 HARV aircraft demonstrate that the proposed method can achieve better performance than the existing daisy chain method.

Time Management System for Applications of UAV Network

  • Lee, Won-Seok;Jang, Jun-Yong;Song, Hyoung-Kyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.405-409
    • /
    • 2020
  • This paper proposes time management system for unmanned aerial vehicle (UAV) network. The computers of the UAVs need time synchronization that time offset does not exceed the minimum interval of data samples for errorless data blending between the computers. The proposed time management system is composed of time synchronization and general management systems for UAV control. The systems communicate each other for time information and control signals. The synchronization system uses improved version of existing time offset estimation that network time protocol (NTP) uses. The time synchronization is operated when the time offset of any UAV exceeds threshold that preconfigured by the general management system. The demonstration of prototype shows stable time synchronization satisfying preconfigured threshold.

Consideration of Detection Range Test Results of Missile Approach Warning Equipment using UAV (UAV를 활용한 미사일접근경보 장비의 탐지거리 시험결과 고찰)

  • Byeongheon Lee;Jaeeon Kwon;Youngil Kim;Sungil Lee;Cheong Lee;Jangwook Hur
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.213-221
    • /
    • 2024
  • Aircraft's operational effectiveness is reduced due to threats from enemy anti-aircraft weapons, which is a weak point. In particular, guided missiles, which pose a threat to aircraft, are rapidly developing due to technological advancements in seekers, and are classified as one of the important technologies in weapon systems. Missile approach warning equipment installed to ensure aircraft survivability detects guided missiles and provides relevant information to respond. Tests were conducted domestically to verify the detection level of missile approach warning equipment, and test results were presented under various test conditions.

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

Development of UAV Teleoperation Virtual Environment Based-on GSM Networks and Real Weather Effects

  • AbdElHamid, Amr;Zong, Peng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-474
    • /
    • 2015
  • Future Ground Control Stations (GCSs) for Unmanned Aerial Vehicles (UAVs) teleoperation targets better situational awareness by providing extra motion cues to stimulate the vestibular system. This paper proposes a new virtual environment for long range Unmanned Aerial Vehicle (UAV) control via Non-Line-of-Sight (NLoS) communications, which is based on motion platforms. It generates motion cues for the teleoperator for extra sensory stimulation to enhance the guidance performance. The proposed environment employs the distributed component simulation over GSM network as a simulation platform. GSM communications are utilized as a multi-hop communication network, which is similar to global satellite communications. It considers a UAV mathematical model and wind turbulence effects to simulate a realistic UAV dynamics. Moreover, the proposed virtual environment simulates a Multiple Axis Rotating Device (MARD) as Human Machine Interface (HMI) device to provide a complete delay analysis. The demonstrated measurements cover Graphical User Interface (GUI) capabilities, NLoS GSM communications delay, MARD performance, and different software workload. The proposed virtual environment succeeded to provide visual and vestibular feedbacks for teleoperators via GSM networks. The overall system performance is acceptable relative to other Line-of-Sight (LoS) systems, which promises a good potential for future long range, medium altitude UAV teleoperation researches.

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.

Path Generation Method of UAV Autopilots Using Max-Min Algorithm

  • Kwak, Jeonghoon;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1457-1463
    • /
    • 2018
  • In recent times, Natural User Interface/Natural User Experience (NUI/NUX) technology has found widespread application across a diverse range of fields and is also utilized for controlling unmanned aerial vehicles (UAVs). Even if the user controls the UAV by utilizing the NUI/NUX technology, it is difficult for the user to easily control the UAV. The user needs an autopilot to easily control the UAV. The user needs a flight path to use the autopilot. The user sets the flight path based on the waypoints. UAVs normally fly straight from one waypoint to another. However, if flight between two waypoints is in a straight line, UAVs may collide with obstacles. In order to solve collision problems, flight records can be utilized to adjust the generated path taking the locations of the obstacles into consideration. This paper proposes a natural path generation method between waypoints based on flight records collected through UAVs flown by users. Bayesian probability is utilized to select paths most similar to the flight records to connect two waypoints. These paths are generated by selection of the center path corresponding to the highest Bayesian probability. While the K-means algorithm-based straight-line method generated paths that led to UAV collisions, the proposed method generates paths that allow UAVs to avoid obstacles.