• Title/Summary/Keyword: Aerial robots

Search Result 20, Processing Time 0.025 seconds

Novel Roaming and Stationary Tethered Aerial Robots for Continuous Mobile Missions in Nuclear Power Plants

  • Gu, Beom W.;Choi, Su Y.;Choi, Young Soo;Cai, Guowei;Seneviratne, Lakmal;Rim, Chun T.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.982-996
    • /
    • 2016
  • In this paper, new tethered aerial robots including roaming tethered aerial robots (RTARs) for radioactive material sampling and stationary tethered aerial robots (STARs) for environment monitoring are proposed to meet extremely-long-endurance missions of nuclear power plants. The flight of the proposed tethered aerial robots may last for a few days or even a few months as long as the tethered cable provides continuous power. A high voltage AC or DC power system was newly adopted to reduce the mass of the tethered cable. The RTAR uses a tethered cable spooled from the aerial robot and an aerial tension control system. The aerial tension control system provides the appropriate tension to the tethered cable, which is accordingly laid down on the ground as the RTAR roams. The STAR includes a tethered cable spooled from the ground and a ground tension control system, which enables the STAR to reach high altitudes. Prototypes of the RTAR and STAR were designed and successfully demonstrated in outdoor environments, where the load power, power type, operating frequency, and flight attitude of the RTAR and STAR were: 180 W, AC 100 kHz, and 20 m; and 300 W, AC or DC 100 kHz, and 80 m, respectively.

Collaborative Control Method of Underwater, Surface and Aerial Robots Based on Sensor Network (센서네트워크 기반의 수중, 수상 및 공중 로봇의 협력제어 기법)

  • Man, Dong-Woo;Ki, Hyeon-Seung;Kim, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.135-141
    • /
    • 2016
  • Recently, the needs for the development and application of marine robots are increasing as marine accidents occur frequently. However, it is very difficult to acquire the information by utilizing marine robots in the marine environment. Therefore, the needs for the researches of sensor networks which are composed of underwater, surface and aerial robots are increasing in order to acquire the information effectively as the information from heterogeneous robots has less limitation in terms of coverage and connectivity. Although various researches of the sensor network which is based on marine robots have been executed, all of the underwater, surface and aerial robots have not yet been considered in the sensor network. To solve this problem, a collaborative control method based on the acoustic information and image by the sonars of the underwater robot, the acoustic information by the sonar of the surface robot and the optical image by the camera of the static-floating aerial robot is proposed. To verify the performance of the proposed method, the collaborative control of a MUR(Micro Underwater Robot) with an OAS(Obstacle Avoidance Sonar) and a SSS(Side Scan Sonar), a MSR(Micro Surface Robot) with an OAS and a BMAR(Balloon-based Micro Aerial Robot) with a camera are executed. The test results show the possibility of real applications and the need for additional studies.

Development of a UAV Using a Humanoid Robot (휴머노이드 로봇을 이용한 무인항공기 개발)

  • Song, Hanjun;Lee, Dasol;Shim, David Hyunchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1112-1117
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) are a popular research topic because of a great ripple effect in the future. However, current UAV technologies cannot be applied to manual aerial vehicles without any modification. As an alternative to current UAV technology, humanoid robots are adopted as pilots. If a humanoid robot controls an aerial vehicle autonomously, not only could manual aerial vehicles be utilized as UAVs, but the humanoid robot would also be put into an environment created for humans and conduct some missions suitable for humans. Humanoid robots are also able to handle tools and equipment designed for humans. In order to prove that a humanoid robot can pilot an airplane, an experiment is performed and the results of this experiment are shown in this paper.

Development of a Remotely Operated Aerial Robot-kit based on the Balloon (풍선기반 원격조종 공중로봇키트 개발)

  • Kim, Hyun-Sik
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.216-221
    • /
    • 2012
  • Recently, although the need of marine robots being raised in extreme areas, the basis is very deficient. Fortunately, as the robot competition is vitalizing and the need of the robot education is increasing, it is desirable to establish the basis of the R&D and industrialization of marine robots and to train professionals through the development and diffusion of marine robot kits. However, in conventional case, there is no remotely operated aerial robot-kit based on the balloon for the marine robot competition, which has the abilities of the airborne locomotion and obstacle avoidance. To solve this problem, an aerial robot-kit which has the abilities of the airborne locomotion and remote control, is developed. To verify the performance of the developed kit, test and evaluation such as surge, yaw and pitch is performed. The test and evaluation results show that the possibility of the real applications of the developed kit.

Air-Ground Cooperating Robots: Applications and Challenges (공중-지상 로봇 협동 기술과 그 응용 및 연구 방향)

  • Yu, Seung-Eun;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • Researches on air-ground robot cooperating system has been made recently. The cooperation among homogeneous robots focused on the architecture of the system, quality and influence of the communication. In contrast, the cooperation among heterogeneous robots such as aerial vehicle and ground vehicle robots has not been much handled. There are a couple of main points for those air-ground cooperating robots. One is using UAV (Unmanned Aerial Vehicle) as an extra sensor of UGV (Unmanned Ground Vehicle). This kind of application is usually used in situations such as guiding UGV to an appropriate path which could be better determined from the eye in the sky as UAV. The other main application of air-ground cooperating robot system is the localization. By combining sensor information from both UAV and UGV, the robot system as a whole can localize a target object or find features in the environment with better performance than UGV or UAV alone. Although these applications are recently studied in many different ways and devices, there are still a lot of possibilities in the field of air-ground cooperating robot systems. We introduce those research fields in this paper.

A Milli-Scale Hexapedal Robot using Planar Linkages (평면기구 메커니즘을 이용한 소형 6족 로봇)

  • Kim, Dong-Sun;Jung, Sun-Pill;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.97-102
    • /
    • 2018
  • A small and lightweight crawling robots have been actively studied thanks to their outstanding mobility and maneuverability. Those robots can navigate into more confined spaces that larger robots are unable to reach or enter such as debris and caves. In this paper, we propose a milli-scale hexapedal robot based on planar linkage design. To make this possible, two necessary conditions for successful crawling are satisfied: thrust force from the ground and aerial phase while running. These conditions are achieved through a newly developed leg design. The robot has a pair of legs and each leg has three feet. Those feet alternatively moves based on 1DOF planar linkage. This linkage is installed at each side of the robot and finally the robot shows the alternating gait and aerial phase during running. As a result, the robot runs with the crawling speed of 0.9 m/s.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

Autonomous Navigation System of an Unmanned Aerial Vehicle for Structural Inspection (무인 구조물 검사를 위한 자율 비행 시스템)

  • Jung, Sungwook;Choi, Duckyu;Song, Seungwon;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.216-222
    • /
    • 2021
  • Recently, various robots are being used for the purpose of structural inspection or safety diagnosis, and their needs are also rising rapidly. Among the structural inspection using robots, a lot of researches has recently been conducted on inspection of various facilities and structures using an unmanned aerial vehicle (UAV). However, since GNSS (Global Navigation Satellite System) signals cannot be received in an environment near or below structures, the operation of UAVs has been done manually. For a stable autonomous flight without GNSS signals, additional technologies are required. This paper proposes the autonomous flight system for structural inspection consisting of simultaneous localization and mapping (SLAM), path planning, and controls. The experiments were conducted on an actual large bridge to verify the feasibility of the system, and especially the performance of the proposed SLAM algorithm was compared through comparative analysis with the state-of-the-art algorithms.

CrabBot: A Milli-Scale Crab-Inspired Crawling Robot using Double Four-bar Mechanism (CrabBot: 이중 4절 링크를 활용한 꽃게 모사 8족 주행 로봇)

  • Cha, Eun-Yeop;Jung, Sun-Pil;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.245-250
    • /
    • 2019
  • Milli-scale crawling robots have been widely studied due to their maneuverability in confined spaces. For successful crawling, the crawling robots basically required to fulfill alternating gait with elliptical foot trajectory. The alternating gait with elliptical foot trajectory normally generates both forward and upward motion. The upward motion makes the aerial phase and during the aerial phase, the forward motion enables the crawling robots to proceed. This simultaneous forward and upward motion finally results in fast crawling speed. In this paper, we propose a novel alternating mechanism to make a crab-inspired eight-legged crawling robot. The key design strategy is an alternating mechanism based on double four-bar linkages. Crab-like robots normally employs gear-chain drive to make the opposite phase between neighboring legs. To use the gear-chain drive to this milli-scale robot system, however, is not easy because of heavy weight and mechanism complexity. To solve the issue, the double-four bar linkages has been invented to generate the oaring motion for transmitting the equal motion in the opposite phase. Thanks to the proposed mechanism, the robot crawls just like the real crab with the crawling speed of 0.57 m/s.

Visual Tracking Control of Aerial Robotic Systems with Adaptive Depth Estimation

  • Metni, Najib;Hamel, Tarek
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper describes a visual tracking control law of an Unmanned Aerial Vehicle(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based on computer vision for quasi-stationary flights above a planar target. The first part of the UAV's mission is the navigation from an initial position to a final position to define a desired trajectory in an unknown 3D environment. The proposed method uses the homography matrix computed from the visual information and derives, using backstepping techniques, an adaptive nonlinear tracking control law allowing the effective tracking and depth estimation. The depth represents the desired distance separating the camera from the target.