• 제목/요약/키워드: Aeration tank

검색결과 143건 처리시간 0.023초

침지형 황 탈질 모듈을 이용한 고속의 질소제거 (High-Rate Nitrogen Removal using a Submerged Module of Sulfur-Utilizing Denitrification)

  • 문진영;황용우;가미선
    • 상하수도학회지
    • /
    • 제21권4호
    • /
    • pp.429-437
    • /
    • 2007
  • This study aims to develop a sulfur-using denitrification process which is possible a renovation to advanced treatment plant submerging a simple module in activated sludge aeration tank. At first, the impact factor of sulfur-using denitrification was appreciated by the batch test. Secondly, reflecting a dissolved oxygen effect of sulfur-using denitrification that was confirmed by the batch test, in a continuous nitrification/sulfur-using denitrification, high-rate nitrogen removal reaction was induced at optimum condition controlling DO concentration according to phases. Also, inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. Result of batch test for sulfur-using denitrification, $NO_2{^-}N$ was lower for consumption of alkalinity and sulfur than that of $NO_3{^-}-N$. These results revealed the accordance of theoretical prediction. In continuous nitrification/sulfur-using denitrification experiment, actual wastewater was used as a influent, and influent nitrogen loading rates were increased 0.04, 0.07, 0.11, $0.14kg\;N/m^3-day$ by changing hydraulic retention times. At this time, nitrogen loading rates of packed sulfur were increased 0.23, 0.46, 0.69, $0.93kg\;N/m^3-day$. As a result, nitrification efficiency was about 100% and denitrification efficiency was 93, 81, 79, 72%. Accordingly, nitrogen removal was a high-rate. Also the module of sulfur-using denitrification covered with microfilter did not make a fouling phenomena according to increased flux. And the module was achieved effluent suspended solids of below 10 mg/L without a clarifier. In conclusion, it is possible a renovation to advanced treatment plant submerging a simple module packed sulfur in activated sludge aeration tank of traditional facilities. And the plant used the module packed sulfur is expected as a effective facilities of high-rate and the smallest.

흰목이 균사 액체배양 조건 (Liquid culture condition of Tremella fuciformis mycelia)

  • 장현유;이찬;최성우;윤정원
    • 한국버섯학회지
    • /
    • 제6권1호
    • /
    • pp.27-31
    • /
    • 2008
  • 현재까지 연구로는 흰목이 균사체에서 EPS 생산과 균사생장에 대한 적정 정치배양 조건이 연구되었다. 본 연구로부터 탄소원과 질소원의 처음 농도, 균사 형태와 발효조의 타입의 선택은 흰목이 균사체 EPS 생산에 가장 영향을 미친다는 것을 알게 되었다. 이들 결과는 공기주입식 반응기에서 EPS 생산성은 진탕탱크 반응기 보다 더 높았다는 점을 증명하였다. 또한 흰목이 균사의 정치배양의 생리적 생장에 대한 지식은 아직도 제한적이다.

  • PDF

하수처리 활성오니공정의 에너지 절감을 위한 퍼지 제어 방법에 관한 연구 (A Study on Fuzzy Control Method of Energy Saving for Activated Sludge Process in Sewage Treatment Plant)

  • 남의석
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1477-1485
    • /
    • 2018
  • There are two major issues for activated sludge process in sewage treatment plant. One is how to make sewage be more clean and the other is the energy saving in sewage treatment process. The major monitoring sewage qualities are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent. These are transmitted to the national TMS(Telemetry Monitoring System) at every hour. If these exceed the environmental standard, the environmental charges imposed. So, these water qualities are to be controlled below the environmental standard in operation of sewage treatment plant. And recently, the energy saving is also important in process operation. Over 50% energy is consumed in blowers and motors for injection oxygen into aeration tank. So, with the water qualities to be controlled below the environmental standard, the energy saving also is to be accomplished for efficient plant management. Almost researches are aimed to control water quality without considering energy saving. AI techniques have been used for control water quality. AI modeling simulator provided the optimal control inputs(blower speed, waste sludge, return sludge) for control water quality. Blower speed is the main control input for activated sludge process. To make sewage be more clean, the excessive blower speed is supplied, but water quality is not better than the previous. In results, non necessary energy is consumed. In this paper we propose a new method that the energy saving also is to be accomplished with the water qualities to be controlled below the environmental standard for efficient plant management. Water qualities in only aeration tank are used the inputs of fuzzy models. Outputs of these models are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent and have the environmental standards. In test, we found this method could save 10% energy than the previous methods.

침지형 분리막을 사용한 오수처리

  • 최광호
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 제6회 하계 Workshop (98 한국막학회, 국립환경연구원 국제 Workshop, 수자원 보전과 막분리 공정)
    • /
    • pp.113-133
    • /
    • 1998
  • In activated sludge process, sludge settling condition is affected by organic loading rate or operation condition, and if settling condition is getting worse, it is common that overall process fails due to wash-out of biomass causing low concentration in the aeration tank. Also activated sludge process has such several problems as requiring large area, consuming a lot of power and producing large volume of sludge. Increased public concern over health and the environment combined with a strong desire to reduce capital, operating and maintenance costs, have created a need for innovative technologies for building new high quality effluents which vail meet 21st century crkeria. MBR(Membrane Bioreactor) process consists of a biological reactor and ultrafiltration(UF) membrane system that replaces the conventional clarifier of an activated sludge process. The main operating advantages of this system are that the quality of the effluent is independent of the settleability of the mixed liquor and that the effluent is free of suspended solids in any operating condition. It is possible to eliminate clarifier and to reduce the volume of aeration tank because it can afford to accumulate high biomass concentration in the bioreactor(20, 000~30, 000mg/L), which would not be possible in a conventional activated sludge process. Therefore, this process reduces overall treatment plant area. In addition to those advantages, Longer SRT condition enables higher sludge digestion in MBR process so the sludge volume produced is 50 to 70% lower than that of conventional activated sludge process There are two kinds of MBR process according to the allocations of membrane. One is cross flow type MBR of which module is located outside of the bioreactor and mixed liquor is driven into the membrane module. The other is submerged type MBR process of which module is submerged in the bioreactor and mixed liquor is generally sucked from the lumen side. addition to that the cake layer is often removed by the uplifting flow of bubbling air. A submerged MBR process is superior to a crossflow MBR in regard to the power consumption because suction pressure of a submerged MBR is generally lower than that of a crossflow MBR which has recirculation pump. A submerged MBR, therefore, has the potential to be applied to small wastewater treatment plants that need low cost treatment systems.

  • PDF

과실 채소중 잔류농약(유기인제)에 관한 연구 (Organophosphorus Insecticide Residues in Fruits and Vegetables)

  • 윤숙자
    • 환경위생공학
    • /
    • 제5권1호
    • /
    • pp.83-92
    • /
    • 1990
  • Adapting two step aeration system to a waste water treatment of W-paper manufactory as Full-Scale Plants, we drew a following conclusion from its practical working. 1. Because BOD removal efficiency was 20% in A-Stage, 90% in B-Stage and total removal efficiency was 97%. It worked treatment plant well and was suitable for effluent water standard as well. Because COD removal efficiency was 42% in A-stage, 71% in B-stage and the total removal efficiency was 94% COD control was possible in effluent water quality. 2. Treatment efficiency according to a load capacity was average 20% in 1.401 BOD kg/m3/d load of A-Stage and average 90% in 0.273 BOD kg/$\textrm {m}^3$ / d load of B-Stage. 3. Treatment efficiency according to a ratio of F/M was 2.657--5.024 kg BOD/kg MLSS/d in A-Stage and BOD removal efficiency was 16-261 in the same stage. The ratio of F/M was 0.068-0.094 kg BOD /kg MLSS/d and BOD removal efficiency ratio was 85-94%. Therefore treatment efficiency could be kept stably and volume of aeration tank could be reduced wholly. 4. Treatment efficiency according to MLSS appeared BOD 20%. COD 42%, in A-Stage and removal efficiency appeared BOD 90%, COD 71% in B-Stage. They were suitable for plan condition. 5. Because of working of complemented treatment plant by AB-Process. 20,000,000 Won a month was saved than the ordinary working cost. Therefore, it was assumed that invested cost could be recollected in 19 months or so consequently.

  • PDF

바이오가스 플랜트 처리수의 고농도 질소 제거 (Pilot-scale Study on Nitrogen Removal of Effluent from Biogas Plant)

  • 유성인;유영섭;이용세;박현수;유희찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.175.1-175.1
    • /
    • 2011
  • A rotating activated bacillus contactor (RABC) process with a series of aerobic reactors was tested in pilot scale to treat digested liquid from an anaerobic digester treating swine wastewater and sewage sludge. The influent (digested liquid) for the RABC process showed C/N ratios less than 2 as a typical feature of effluent from anaerobic digesters. The pilot process, which consists of three 3 RABC reactors, four aerobic tanks and a sedimentation tank, was operated for 210 days with a hydraulic retention time of 20 days without pH and temperature control. Since the Bacillus-enriched aerobic reactors shows high efficiencies of nitrogen removal at low DO levels less than 1.0 mg/L, they were operated at reduced aeration intensities. With relatively low concentrations of organics in comparison with nitrogen concentrations, the RABC process tested in this study showed stable and high nitrogen and organics removal efficiencies over 80%. The nitrogen removal process tested in this study was proven to be an effective and operation-cost saving (lower aeration) method to remove nitrogen without adding external carbon sources to meet the optimum C/N ratio.

  • PDF

유전 알고리즘을 이용한 폭기조내 용존산소농도 제어 (Control of the Dissolved Oxygen Concentration in the Aeration Using Genetic Algorithms)

  • 김창현;허동렬;김상효;정형환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2479-2481
    • /
    • 2000
  • It is the time-varying dissolved oxygen(DO) dynamics that requires controlling for maintaining the DO concentration in the aeration tank. Many linear controllers have thus been applied. Because of the nonlinearity of the oxygen transfer function together with the time-varying respiration rate, however, the linear controllers are found to poorly perform in many cases. To overcome this limitation, a number of advanced controlling techniques have been developed and applied. In this study, designed GA-PI Controller using genetic algorithm(GA). Genetic algorithms(GAs) are search algorithms based on the mechanics of natural selection and natural genetics. As result of computer simulation, GA-PI controller shows the better control performance especially under the condition of the continuously changing DO set-point. This result represents that GA-PI controller can be a good measure to control the DO concentration in the SBR process which requires the sequential DO set-point change to accomplish the nitrification and denitrification in a single reactor.

  • PDF

A Study on the Chemical Treatment Techniques of High Concentration Ammonia Nitrogen in Food Wastewater

  • Tae-Hwan JEONG;Su-Hye KIM;Woo-Taeg KWON
    • 웰빙융합연구
    • /
    • 제6권3호
    • /
    • pp.33-36
    • /
    • 2023
  • Purpose: Since the food wastewater contains a high concentration of nitrogen, it is very important to find a way to efficiently remove it. Research design, data and methodology: A total of four experiments were conducted under different conditions to remove ammonia nitrogen present in the food wastewater. The experiment was designed by adding sodium hypochlorite to the raw food wastewater and varying conditions such as pH control, aeration/precipitation, and stirring. Results: The ammonia nitrogen removal rate in Experiment 1 was about 12% (sodium hypochlorite added), ammonia nitrogen increased about 4.7% in Experiment 2 (sodium hypochlorite added after aeration/precipitation in a bioreaction tank, stirring), and decreased about 52.5% (sodium hypochlorite added after controlling and stirring). Conclusions: When the concentration of sodium hypochlorite was high, ammonia nitrogen was best removed, and the pH was adjusted to 12, and sodium hypochlorite was added after stirring, and the removal was the second best. If the method of this study is further studied and developed, it can be basic data for ammonia nitrogen removal in the future.

하폐수의 재사용 및 방류를 위한 폭기조 내 표준산소전달 효율 모니터링 시스템에 관한 연구 (Study on the Standard Oxygen Transfer Efficiency Monitoring System in the Aeration Tank for Reuse and Discharge of Wastewater)

  • 김홍석;김용범;고경한;김상우;심환보
    • 자원리싸이클링
    • /
    • 제28권6호
    • /
    • pp.73-78
    • /
    • 2019
  • 본 연구에서는 활성 슬러지 하수처리장에서 배출되는 off-gas에 대한 포집 및 측정 모니터링을 통해 폭기조의 산소전달효율을 측정하고 청수와 비교하여 시스템의 신뢰성을 검증하는 연구를 수행하였다. 먼저, 청수를 기반으로 용존산소, 산소전달계수 및 표준산소전달효율을 측정하였으며 각각 8.60 mg/L, 9.49/hr, 23.96%의 값이 얻어졌다. 한편, 하수처리장 현장에서 진행한 off-gas 시험 결과 표준산소전달효율이 22.81%로 계산되어 청수와의 차이가 거의 없는 것으로 나타났다. 이는 현장에 설치된 산기관의 성능 및 폭기조의 상황을 모니터링 시스템을 이용해 실시간으로 확인함으로써 신뢰성있는 데이터를 확보할 수 있음을 의미한다.

Bench-scale 선박용 고도수처리장치에서의 T-N 제거효율 연구 (A Study on Removal Efficiency of T-N in Bench-scale for Shipboard Sewage Treatment Plant)

  • 최영익;신대열;이승철;정진희;윤영내
    • 한국환경과학회지
    • /
    • 제27권1호
    • /
    • pp.39-45
    • /
    • 2018
  • In this study, the International Maritime Organization (IMO)'s guideline MEPC. 277 (64) was developed and evaluated for the removal efficiency of T-N in a SBR and MBR combined process. This combined process of resized equipment based on large capacity water treatment device for a protection of marine aquatic life. In this experiment, T-N concentration of influent and effluent was measured through with the artificial wastewater. The SBR reactor operation time was varied according to the C : N : P ratios so that different conditions for mixing and aeration period in mins (90 : 60, 80 : 40, 70 : 50) and two C: N: P ratios (10 : 5 : 3, 10 : 3 : 1) were used. During experiment in the reactor's aeration and anoxic tank DO concentrations were 3 mg/L and 0.2 mg/L respectively. Furthermore, in the reactor MLSS concentration was 2000 mg/L and flowrate was 2 L/hr. Experiment results showed that C : N : P, 10 : 3 : 1 ratio with 90 mins mixing and 60 mins aeration maximized removal efficiency at 97.3% T-N as compared to other conditions. The application of the SBR and MBR combined process showed efficient results.