• 제목/요약/키워드: Aeration tank

검색결과 143건 처리시간 0.023초

SOUR을 이용한 하수처리시설 포기조 설계 적용에 관한 연구 (Applicability Study of Reactor Design in Sewage Treatment Plant using Specific Oxygen Uptake Rate)

  • 주현종;김성철;이광현
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.140-147
    • /
    • 2010
  • In existing design method for aeration tank water temperature was considered as governing variable for applying safety factor. This study tried a few new approach of aeration tank design using SOUR at various temperature conditions. Specific substrate utilization rate (U) and specific oxygen uptake rate (SOUR) both were analyzed at various temperature and SRT. The laboratory scale reactor was operated on various temperature ($10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$) and SRT (5day, 10day, 20day, 30day). In this study, SOUR tended to increase with the temperature increased. On the other hand, SOUR tended to decrease when SRT increased from 5 days to 30 days. Empirical equations were obtained SOUR=a/SRT+b and $SOUR=(a/m){\cdot}U+(b-a(n/m))$ from the relationship between SRT, U and SOUR. Empirical equations shows the possibility as a new design method for the aeration basin.

하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용 (Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant)

  • 김준현;한미덕;한영한
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

수중폭기용 노즐형 산기관 개발에 관한 실험적 연구 (Experimental Study on the Development of Nozzle-Type Diffusers for Submersible Aeration Process)

  • 임동렬;조남효
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.604-608
    • /
    • 2004
  • Experimental study was conducted to increase the oxygen transfer efficiency of air diffusers in clean water. By measuring the bubble size from the bubbly two-phase flow visualization with several air diffusers the size of air bubbles near the top surface of aeration tank seems to be independent on the diffuser types. Considering design parameters for the better breakup of larger bubbles around the air diffusers, advanced conceptual air diffusers using nozzle-type throat showing the higher oxygen transfer efficiencies were made.

  • PDF

Effects of Organic Loading Rates on Treatment Performance in a Polyvinylidene Media Based Fixed-Film Bioreactor

  • Ahmed, Zubair;Oh, Sang-Eun;Kim, In S.
    • Environmental Engineering Research
    • /
    • 제14권4호
    • /
    • pp.238-242
    • /
    • 2009
  • This study investigated the effects of organic loading rates on simultaneous carbon and nitrogen removal in an innovative fixed-film aerobic bioreactor. The fixed-film bioreactor (FFB) was composed of a two-compartment aeration tank, in which a synthetic filamentous carrier was submerged as biofilm support media, and a settling tank which polyvinylidene media (Saran) was used as settling aid for suspended solids. Three different organic loading rates, ranging from 0.92-2.02 kg chemical oxygen demand/$m^3$/day were applied by varying hydraulic retention time (HRT). The total soluble organic carbon removal efficiencies were in the range of 90-97%. The removal efficiency of ammonia was found to be in the range of 70-84%. Total nitrogen removal efficiency was found to be in the range of 40-45%, which indicates that denitrification reactions occurred simultaneously in the attached biofilm on the fibrous media in the aeration tank. The settling performance of suspended solids was significantly improved due to the presence of Saran media in the settling compartment, even for a short HRT. The fixed-film aerobic bioreactor used in this study demonstrated efficient treatment efficiency even at higher organic loading rates and at short HRTs.

Application of upflow multi-layer bioreactor (UMBR) for domestic wastewater treatment in HCMC

  • Cao, Duc Hung;Nguyen, Ngoc Han;Nguyen, Phuoc Dan;Bui, Xuan Thanh;Kwon, J.C.;Shin, H.S.;Lee, E.T.
    • Membrane and Water Treatment
    • /
    • 제3권2호
    • /
    • pp.113-121
    • /
    • 2012
  • Up-flow multi-layer bioreactor (UMBR) is a hybrid system using dual sludge that consists of an up-flow multi-layer bioreactor as anaerobic/anoxic suspended growth microorganisms followed by an aeration tank. The UMBR acts as a primary settling tank, anaerobic/anoxic reactor, thickener which requires low energy due to mixing by up-flow stream. This study focused on using a pilot UMBR plant with capacity of 20-30 $m^3$/day for domestic wastewater in HCMC. HRTs of UMBR and aeration tank were 4.8 h and 7.2 h, respectively. The average MLSS of UMBR ranged from 10,000-13,600 mg/l SS. Internal recycle rate and sludge return were 200-300% and 150-200%, respectively. The results obtained from this study at flow rate of 20 $m^3$/day showed that removal of COD, SS, TKN, N-$NH_4$, T-N, and color were 91%, 87%, 86%, 80%, 91% and 91%, respectively.

순산소의 MBR(Membrane Bio Reactor) 공정 적용을 통한 음식물류 폐기물 혐기성소화 유출수 처리 평가 (Evaluation of pure oxygen with MBR(Membrane Bio Reactor) process for anaerobic digester effluent treatment from food waste)

  • 박세용;김문일;박성혁
    • 유기물자원화
    • /
    • 제29권3호
    • /
    • pp.5-16
    • /
    • 2021
  • 본 연구에서는 MBR 공정 내 폭기조에서 순산소 용해와 일반 공기 폭기의 효율에 대한 비교·평가를 통해 순산소의 MBR 공정 적용성에 대해 평가 하였다. 순산소 장치에 의한 유기물 및 암모니아 산화 여부에 대해 평가하였으며, 실폐수(음식물류 폐기물의 혐기성소화 유출수) 적용 과포화산소용해 효율 평가를 진행하였다. 순산소용해와 일반공기폭기 방법의 SCOD, 암모니아 제거율과 속도는 비슷하였다. 하지만, 순산소 용해에 의한 미생물 수율이 일반공기폭기법에 의한 미생물 수율보다 약 0.03 g MLSS-produced/g SCOD-removed 낮아 잉여슬러지 처리 비용이 감소될 수 있을 것이라 판단된다. 음식물류 폐기물의 혐기성 소화 유출수의 고농도 유기물 (4,000 mg/L) 및 암모니아 (1,400 mg/L)의 제거율을 순산소용해와 일반공기폭기법을 비교한 결과, 순산소 용해기가 일반공기폭기법에 비해 유기물 제거율이 약 13% 가량 더 높게 평가되었다. 또한, MLSS의 경우 일반공기폭기법이 순산소장치에 비해 0.3배가량 높았다. 이는, 순산소장치의 경우 폭기조 내에 용존산소가 충분히 유지, 공급되기 때문에 슬러지 자산화가 고도로 진행된 결과로 판단되었다. 따라서, 고농도 유기물을 함유한 폐수 처리를 위한 방법으로는 기존에 많이 사용되었던 일반공기폭기법보다 순산소장치를 활용하는 것이 경제적인 면에서 더 유리할 것으로 판단되었다.

Membrane Filter를 이용한 수산물 가공폐수처리에 대한 연구 (Research of Sea Food Wastewater Treatment using Membrane Filter)

  • 한동준
    • 환경위생공학
    • /
    • 제22권4호
    • /
    • pp.119-130
    • /
    • 2007
  • Sea food wastewater including high concentration of organics and nutrients is hard to treat stably by established traditional activated sludge process. This research is aimed to obey more and more of strengthened the law and to secure stable effluents by using advanced treatment process applied membrane filter in aeration tank for treatment of wastewater from marine products. It must maintain pH of influent over 6.0 to keep up stably biological sludge of advanced treatment process. At 38hr of HRT, removal rates of TBOD and TCOD were 99.9% and 99.4% respectively and TSS also removed with high efficiency. Most organics in the effluent was constituted with soluble type materials, it caused that membrane filter installed aeration tank should remove minute suspended particles. The reactor was operated well to get stable treatment results for operation period, in spite of high loading of organics like that $0.67{\sim}1.67\;kgTBOD/m^3/day$ of organics loading and $0.10{\sim}0.21\;kgBOD_5/kgMLSS/day$ of F/M ratio. At $36{\sim}48hr$ of HRT, removal rates of T-N and T-P were $89.7{\sim}90.7%\;and\;91.5{\sim}96.0%$ respectively. It means this treatment process also work to remove nutrients of high concentration. Upon investigation of advanced treatment's operation factors, optimum SRT was about 30days and average SNR that showed tendency to increase according to increase water temperature was calculated 0.014 gN/g MLVSS/d. SDNR was risen in conformity to increase F/M ratio of Non-aeration tank and investigated as $0.038{\sim}0.051\;gN/gMLVSS/d$.

Efficient aerobic denitrification in the treatment of leather industry wastewater containing high nitrogen concentration

  • Kang, Kyeong Hwan;Lee, Geon;Kim, Joong Kyun
    • Environmental Engineering Research
    • /
    • 제20권1호
    • /
    • pp.79-87
    • /
    • 2015
  • To treat leather industry wastewater (LIW) containing high nitrogen concentration, eight aerobic denitrifiers were isolated from sludge existing in an LIW-treatment aeration tank. Among them, one strain named as KH8 had showed the great ability in denitrification under an aerobic condition, and it was identified as Pseudomonas aeruginosa R12. The aerobic denitrification ability of the strain KH8 was almost comparable to its anaerobic denitrification ability. In lab-scale aerobic denitrifications performed in 1-L five-neck flasks for 48 hr, denitrification efficiency was found to be much improved as the strain KH8 held a great majority in the seeded cells. From the nitrogen balance at the cell-combination ratio of 10:1 (the strain KH8 to the other seven isolates) within the seeded cells, the percentage of nitrogen loss during the aerobic denitrification process was estimated to be 58.4, which was presumed to be converted to $N_2$ gas. When these seeded cells with lactose were applied to plant-scale aeration tank for 56 day to treat high-strength nitrogen in LIW, the removal efficiencies of $COD_{Cr}$ and TN were achieved to be 97.0% and 89.8%, respectively. Under this treatment, the final water quality of the effluent leaving the treatment plant was good enough to meet the water-quality standards. Consequently, the isolated aerobic denitrifiers could be suitable for the additional requirement of nitrogen removal in a limited aeration-tank capacity. To the best of our knowledge, this is the first report of aerobic denitrifiers applied to plant-scale LIW treatment.

Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Environmental Engineering Research
    • /
    • 제25권2호
    • /
    • pp.251-257
    • /
    • 2020
  • This study was performed to verify the possibility of nitrification and denitrification in a single reactor. In batch type experiment, optimal point of experimental conditions could be found by performing the experiments. When supply location of microbubbles was located at half of width of the aeration tank and operating pressure of 0.5 bar, it was possible for zones in the aeration tank to be separated into anoxic and aerobic by controlling air suction rate according to operating pressure of the generator. To be specific, the concentration of dissolved oxygen (DO) in zone 1 and 2 of the aeration tank could be maintained as less than 0.5 mg/L. Also, in the case of concentration of oxygen in zone 3 and 4, the concentration of DO was increased up to 1.7 mg/L due to effects of microbubbles. In continuous flow type experiment based on the results of batch type experiments, the removal efficiency of nitrogen based on T-N was observed as 39.83% at operating pressure of 0.5 bar and 46.51% at operating pressure of 1 bar so it was able to know that sufficient air suction rate should be required for nitrification. Also, denitrification process could be achieved in a single reactor by using ejector type microbubble generator and organic matter and suspended solid could be removed. Therefore, it was possible to verify that zones could be separated into anoxic and aerobic and nitrification and denitrification process could be performed in a single reactor.

Automatic Control Of Dissolved Oxygen In Activated Sludge Aeration Tank

  • Park, Kwang-Soo;Heo, Nam-Hyo;Lee, Hae-Goon;Han, Gee-Baek;Kim, Chang-Won
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권2호
    • /
    • pp.113-119
    • /
    • 1999
  • The quality of the effluent from an activated sludge aeration tank can deteriorate when the substrate removal rate decreases due to an abrupt reduction in the DO concentration, which is affected by such operating conditions as the loading rate, temperature, wastewater composition, and so on. In this research, a DO control system that includes a PI (proportional-integral) controller/Hiraoka controller was developed and applied to a pilot-scale activated sludge process, then its acceptability was estimated. The applicability of the respiration rate to DO control was also estimated. The respiration rate indicated a variety of input organic loading rates, which is the main disturbance to the DO concentration in an aeration tank. When the influent concentration incrementally decreased and increased between CODcr 1,000 mg/l and 100 mg/l, the control system with a PI controller exhibited a good llperformance-the average DO concentrations were 2.00$\pm$0.14 mg/l and 1.88$\pm$0.15 mg/l (set value was 2.0 mg/l), respectively, and the settling time was just 10 minites. When the control system was operated for 4 days, the DO concentration was 1.99$\pm$0.18 mg/l and 32.6% of the air flowrate was saved. However, the fluctuations in the respiration rates and air flowrates were severe, which could be harmful to the stability of the biomass and mechanical stability of the blower. A possible approach to solve this problem may be the simultaneous control of the loading rate and DO concentration.

  • PDF