• Title/Summary/Keyword: Aeration rate

Search Result 415, Processing Time 0.022 seconds

Applicability Study of Reactor Design in Sewage Treatment Plant using Specific Oxygen Uptake Rate (SOUR을 이용한 하수처리시설 포기조 설계 적용에 관한 연구)

  • Joo, Hyun Jong;Kim, Sung Chul;Lee, Kwang Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.140-147
    • /
    • 2010
  • In existing design method for aeration tank water temperature was considered as governing variable for applying safety factor. This study tried a few new approach of aeration tank design using SOUR at various temperature conditions. Specific substrate utilization rate (U) and specific oxygen uptake rate (SOUR) both were analyzed at various temperature and SRT. The laboratory scale reactor was operated on various temperature ($10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$) and SRT (5day, 10day, 20day, 30day). In this study, SOUR tended to increase with the temperature increased. On the other hand, SOUR tended to decrease when SRT increased from 5 days to 30 days. Empirical equations were obtained SOUR=a/SRT+b and $SOUR=(a/m){\cdot}U+(b-a(n/m))$ from the relationship between SRT, U and SOUR. Empirical equations shows the possibility as a new design method for the aeration basin.

Effect of Aeration and Agitation Conditions on the Production of Glucoamylase with Aspergillus niger No. PFST-38

  • Oh, Sung-Hoon;O, Pyong-Su;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.292-297
    • /
    • 1993
  • Aspergillus niger No. PFST-38 was grown on complex media in 30L agitated fermentors at various aeration rates and stirrer speeds. We could correlate the mixing time as a function of the Reynolds number and the apparent viscosity, as follows. ${\theta}_M=2.95\;\NRe^{-0.52},\;{\theta}_M=1.88\;{\eta_a}^{0.57}$ Also, the effects of the apparent viscosity (${\theta}_a$), the impeller rotational speed (N), the air flow rate ($V_s$), and the mixing time (${\theta}_M$) on the oxygen transfer coefficient, $K_L a$ were determined experimentally, and equated as follows. $K_La=12.04N^{0.88}Vs^{0.71}{n_a}^{-0.83},\;K_La=30.2N^{0.88}Vs^{0.71}{\theta_M}^{-1.45}$ $K_La$ increased as the agitation speed and the air flow rate increased. The rate of $K_La$ increase was dependent more on the rotational speed of impeller than on the air flow rate. The glucoamylase production increased with the increase of the agitation speed upto at 500 rpm and increased with the increase of air flow rate upto at 1.0 vvm. The values calculated from the above equation confirmed that the experimental maximum production of glucoamylase was achieved when the $K_La$ and the apparent viscosity of the broth were $260\;hr^{-1}$ and 1800 cps, respectively.

  • PDF

Influence of Agitation Intensity and Aeration Rate on Production of Antioxidative Exopolysaccharides from Submerged Mycelial Culture of Ganoderma resinaceum

  • Kim Hyun-Mi;Kim Sang-Woo;Hwang Hye-Jin;Park Moon-Ki;Mahmoud Yehia A.-G.;Choi Jang-Won;Yun Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1240-1247
    • /
    • 2006
  • The present study investigated the influence of the aeration rate and agitation intensity on the production of the mycelial biomass and antioxidative exopolysaccharide (EPS) in Ganoderma resinaceum. In submerged cultures with varying agitation speeds and aeration rates in a stirred-tank reactor, the maximum mycelial biomass and maximum EPS concentration were achieved at 50 rpm and 300 rpm, respectively. Under varying aeration rates, the highest amount of mycelial biomass (18.1 g/l) was accumulated at the lowest aeration rate (0.5 vvm) and the maximum EPS production (3.0 g/l) obtained at 1.0 vvm. A compositional analysis revealed that the five different EPSs were protein-bound heteropolysaccharides, consisting of 87.17-89.22% carbohydrates and 10.78-12.83% proteins. The culture conditions had a striking affect on the carbohydrate composition of the EPS, resulting in different antioxidative activities. All the EPSs showed strong scavenging activities against superoxide and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals, whereas no clear trend in antioxidative activity was observed against hydroxyl radicals and lipid peroxides. Although the precise reason for this difference is still unclear, the high glucose moiety of EPS is probably linked to its broad spectrum of antioxidative activity.

Iron Oxidation using Limestone in Groundwater (석회석을 이용한 지하수 철분 산화)

  • Sim, Sang Jun;Kang, Chang Duk;Lee, Ji Hwon;Cho, Young Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.73-81
    • /
    • 2000
  • The removal of ferrous iron (Fe(II)) in groundwater is generally achieved by simple aeration or the addition of oxidizing agent. Aeration followed by solid-liquid separation is the most commonly used as physico-chemical treatment method for iron removal. In general aeration has been shown to be very efficient in insolubilizing ferrous iron at the pH level greater than 6.5. In this study pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron. In batch experiments, oxidation rate of ferrous iron was investigated under different conditions including limestone granule size. initial concentration of the ferrous iron, pH, temperature and ionic strength in groundwater. The pH in groundwater was presumed as the most important factor determining oxidation rate of ferrous iron. According as the size of the limestone granules decreased, the pH of the iron contaminated water increased quickly and oxidation of the ferrous iron was achieved immediately too. The oxidation rate of the ferrous iron was found to be proportion to initial concentration of the iron contaminated water, temperature and ionic strength, respectively.

  • PDF

A Study on Energy Usage Monitoring and Saving Method in the Sewage Treatment Plant (공공하수처리시설에서 에너지 사용현황 및 절감방안 연구)

  • Kim, Jongrack;Rhee, Gahee;You, Kwangtae;Kim, Dongyoun;Lee, Hosik
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.535-545
    • /
    • 2020
  • This study aims to conserve and monitor energy use in public sewage treatment plants by utilizing data from the SCADA system and by controlling the aeration rate required for maintaining effluent water quality. Power consumption in the sewage treatment process was predicted using the equipment's uptime, efficiency, and inherent power consumption. The predicted energy consumption was calibrated by measured data. Additionally, energy efficiency indicators were proposed based on statistical data for energy use, capacity, and effluent quality. In one case study, a sewage treatment plant operated via the SBR process used ~30% of energy consumed in maintaining the bioreactors and treated water tanks (included decanting pump and cleaning systems). Energy consumption analysis with the K-ECO Tool-kit was conducted for unit processing. The results showed that about 58.7% of total energy consumed was used in the preliminary and biological treatment rotating equipment such as the blower and pump. In addition, the energy consumption rate was higher to the order of 19.2% in the phosphorus removal process, 16.0% during sludge treatment, and 6.1% during disinfection and discharge. In terms of equipment energy usage, feeding and decanting pumps accounted for 40% of total energy consumed following 27% for blowers. By controlling the aeration rate based on the proposed feedback control system, the DO concentration was reduced by 56% compared pre-controls and the aeration amount decreased by 28%. The overall power consumption of the plant was reduced by 6% via aeration control.

용존산소농도 조절에 의한 미생물 유래 Transglutaminasc 생산

  • Yu, Jae-Su;Jeon, Gye-Taek;Sin, Won-Seon;Jeong, Yong-Seop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.343-346
    • /
    • 2001
  • The effect of agitation speed and aeration rate on mTG production and cell growth by Streptoverticillum morbarense was investigated. Dissolved oxygen was controlled by on-line computer-controlled fermentation system. The agitation speed and aeration rate of 2.5 L fermentor ranged from 330 to 360 게m and 1 vvm to 4 vvm, respectively. The highest mTG production was 2.1 U/mL when dissolved oxygen level was 20%, and it was improved almost 1.1 times in comparison with that without dissolved uxygen control.

  • PDF

Mechanism of Gel Layer Removal for Intermittent Aeration in the MBR Process (MBR 공정에서 간헐공기주입에 따른 겔층 제거 메커니즘)

  • Noh Soo-Hong;Choi Young-Keun;Kwon Oh-Sung;Park Hee-Sung
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.188-195
    • /
    • 2006
  • The purpose of this study was to investigate the effect of an intermittent aeration mode to reduce the membrane fouling in a submerged membrane process using the specifically devised module (YEF 750D-2). The fluid velocity on the module increased with increasing the supplied air volume, and decreased with the increment of MLSS in the biological reactor. The reduction rate of the fluid velocity was found to be $3\times10^{-4}m{\cdot}min/sec{\cdot}L$ per 1,000 mg MLSS/L increased. In the operation of the intermittent aeration, the intermitted stop of the aeration provoked the formation of a cake layer on the gel layer which was previously formed during the aeration, resulting in the highly increased TMP level. However, the TMP level could be significantly lowered by the subsequent backwashing and aeration that effectively removed the cake along with the gel layer on the membrane surface. In this study, the optimum condition for the intermittent aeration was determined to be aeration for 20 sec and pause for 20 sec.

Oxygen Transfer Efficiencies of A Single Spiral Roll Aeration System by the Off-gas Method (Off-gas Analyzer를 이용한 하수처리장 단일선회류 방식 포기시스템 산소전달 효율의 평가)

  • Park, Bo Hwa;Ko, Kwang Baik;Park, Jae Han;Lim, Se Ho;Shin, Dong Rok;Yun, Hye Jung;Lee, Ji Young;Moon, Tae Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.534-539
    • /
    • 2006
  • The supply of oxygen for aeration is the largest energy consumer at activated sludge wastewater treatment plants. Replacement of less efficient aeration systems with fine pore aeration devices can save up to 50 percent of aeration energy costs. The purpose of this study was the diagnosis and evaluation of a domestic wastewater aeration system by the off-gas method which had been studied by US EPA and ASCE. For this study, an off-gas analyzer and its hood were made to collect off-gas. Also, a vacuum pump was connected to the analyzer to make suction of off-gas. Experiments were conducted at a domestic activated sludge wastewater treatment plant which had a single spiral roll aeration system installed with P.E tube diffuser. Data on OTE(f), SOTE(pw), OUR, and air flow rate were obtained from these experiments. In case of replacing an aeration system, it is recommended that it should be replaced with perforated membrane disc or ceramic disc fine bubble diffusers installed in a full floor coverage or grid pattern.

Influences of Aeration Rate and Manure Temperature on Phosphorus Transformation in Swine Liquid Manure Bioreactor (액상 돈분 발효조에서 폭기량과 돈분온도가 인의 형태 변환에 미치는 영향)

  • Park K. J.;Hong J. H.;Kim J. Y.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.508-514
    • /
    • 2004
  • This study was conducted to investigate the influences of aeration rates and temperatures on phosphorus transformation in the manure during treatment of swine manure in 15.3L batch reactor. The total phosphorus of raw manure was composed of $91.5\%$ of inorganic phosphorus and $8.5\%$ of organic phosphorus. During the experiment, inorganic phosphorus decreased from $91.5\%\;(385.7\;mg/L)\;to\;25.8-42.7\%\;(108.8-179.8\;mg/L)$ while organic phosphorus increased from $8.5\%\;(35.6\;mg/L)\;to\;57.3-74.2\%\;(241.5-312.5\;mg/L)$. The organic phosphorus was increased by the possible transformation of soluble inorganic phosphorus to poly-phosphate by the microbial uptake. However, soluble inorganic phosphorus was not decreased much during the experiment because the insoluble inorganic phosphorus was transferred to soluble inorganic phosphorus offsetting the microbial uptake. There was no significant difference in soluble inorganic proportion variance during the experiment among treatments for three liquid temperatures and three aeration levels. In terms of phosphorus transformation in the manure and energy consumption required for aeration, lower aeration was desirable fur the manure treatment.

Effect of Aeration-Agitation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.224-228
    • /
    • 2008
  • With the aim of increasing the $CoQ_{10}$ production in mass culture, the effect of aeration-agitation on the $CoQ_{10}$ production using Rhodobactor sphaeroides was investigated in a l-L bioreactor. The maximum $CoQ_{10}$ production was 1.69 mg/g of dry cell weight under conditions of 50 Lux, $30^{\circ}C$, 300 rpm, and 5-vvm aeration. The $CoQ_{10}$ production was improved to produce 2.91 mg/g of dry cell weight under reduced conditions of agitation speed (200 rpm) and aeration rate (0.2 vvm). When R. sphaeroides was cultivated under more reduced DO levels during the exponential phase of the cell, the $CoQ_{10}$ production yield of 3.88-mg/g dry cell weight was the maximum obtained. Therefore, poorer conditions of aeration-agitation resulted in higher production of $CoQ_{10}$, and thus DO content was a crucial factor in the production of $CoQ_{10}$. Accordingly, it was necessary to control the DO concentration in order to enhance the $CoQ_{10}$ biosynthesis within a large-scale production.