• Title/Summary/Keyword: Advection heat

Search Result 60, Processing Time 0.035 seconds

Heat Budget in Incheon Coastal Area in 1994 (1994년 인천 연안역의 열수지)

  • 최용규;윤홍주
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.293-297
    • /
    • 1999
  • Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) in Incheon harbor of National Fisheries Research and Development Institute, heat budget in Incheon coastal area was estimated. The temperature differences between the sea surface and near bottom were nearly within 1$^{\circ}C$. This indicate the mixing from the sea surface and the bottom. The net heat flux through the sea surface and the advection through the inner and outer bay was affected uniformly to the water body in Incheon coastal area. The net heat flux was about 110W/$m^2$ in maximum value on May, about -80W/$m^2$ in minimum on January. The net heat flux through the sea surface from the solar radiation was about 2.35$\times$${10}^5$W during the year. This heat flux flew out the bay through the advection by the same flux.

  • PDF

Estimated Advection Heat in the East/Japan Sea

  • Han, In-Seong;Kang, Yong-Q;Kim, Bok-Kee;Seong, Ki-Tack
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.165-170
    • /
    • 2003
  • A significant surface net heat loss appears around the Kuroshio and the Tsushima Warm Current regions. The area where the surface heat loss occurs should require heat to be supplied by the current to maintain the long-term annual heat balance. Oceanic heat advection in these regions plays an important role in the heat budget. The spatial distribution of the heat supply by the Tsushima Warm Current near the surface was examined by calculating the horizontal heat supply in the surface layer of the East/Japan Sea, directly from historical sea surface temperature and current data. We have also found a simple estimation of the effective vertical scale of heat supply by the current to compensate net heat loss using the heat supplied by the current in the surface 10m layer. The heat supplied by the current for the annual heat balance was large in the Korea/Tsushima Strait and along the Japanese Coast, and was small in the northwestern part of the East/Japan Sea. The amount of heat supplied by the current was large in the northwestern part and small in the southeastern part of the East/Japan Sea. These features suggest that the heat supplied by the Tsushima Warm Current is restricted to near the surface around the northeastern part and extends to a deeper layer around the southeastern part of the East/Japan Sea.

  • PDF

Analysis of the Effects of Advection and Urban Fraction on Urban Heat Island Intensity using Unified Model for Seoul Metropolitan Area, Korea (통합모델을 활용한 이류와 도시비율이 서울 수도권 지역의 도시열섬강도에 미치는 영향 분석)

  • Hong, Seon-Ok;Kim, Do-Hyoung;Byon, Jae-Young;Park, HyangSuk;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.381-390
    • /
    • 2019
  • This study investigates the impacts of urban land-use fraction and temperature advection on the urban heat island intensity over the Seoul metropolitan area using the UM (Unified Model) with the MORUSES (Met Office Reading Urban Surface Exchange Scheme) during the heat wave over the region from 2 to 8, August 2016. Two simulations are performed with two different land-use type, the urban (urban simulation) and the urban surfaces replaced with grass (rural simulation), in order to calculate the urban heat island intensity defined as the 1.5-m temperature difference between the urban and the rural simulations. The land-use type for the urban simulation is obtained from Korea Ministry of Environment (2007) land-use data after it is converted into the types used in the UM. It is found that the urban heat island intensity over high urban-fraction regions in the metropolitan area is as large as 1℃ in daytime and 3.2℃ in nighttime, i.e., the effects of urban heat island is much larger for night than day. It is also found that the magnitude of urban heat island intensity increases linearly with urban land-use fraction. Spatially, the estimated the urban heat island intensities are systematically larger in the downwind regions of the metropolitan area than in the upwind area due to the effects of temperature advection. Results of this study indicate that urban surface fraction in the city area and temperature advection play a key role in determining the spatial distribution and magnitude of urban heat island intensity.

LARGE-SCALE VERSUS EDDY EFFECTS CONTROLLING THE INTERANNUAL VARIATION OF MIXED LAYER TEMPERATURE OVER THE NINO3 REGION

  • Kim, Seung-Bum;Lee, Tong;Fukumori, Ichiro
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.21-24
    • /
    • 2006
  • Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the NINO3 domain ($150-90^{\circ}W$, $5^{\circ}N-5^{\circ}S$) are studied using an ocean data assimilation product that covers the period of 1993 to 2003. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed mostly by Ekman current advecting large-scale temperature anomalies though the southern boundary of the domain. Unlike many previous studies, we explicitly evaluate the subsurface processes that consist of vertical mixing and entrainment. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to temporal change in ML depth is negligible comparing to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in wind-driven upwelling and temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Ni? cooling events. When the advective tendencies are evaluated by spatially averaging the conventional local advective tendencies of temperature, the apparent effects of currents with spatial scales smaller than the domain (such as TIWs) become very important as they redistribute heat within the NINO3 domain. However, such internal redistribution of heat does not represent external processes that control the domain-averaged MLT.

  • PDF

Surface Heat Flux and Oceanic Heat Advection in Sendai Bay

  • Yang Chan-Su;Hanawa Kimio
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.11-24
    • /
    • 2006
  • Coastal sea surface temperature (CSST) and meteorological data from January through December 1995 are used to estimate the net surface heat flux and heat content for Sendai Bay. The average annual surface heat flux in the area north of the bay is estimated to be $+35Wm^{-2}$, whereas the southwestern area is estimated to be $+56Wm^{-2}$. Therefore, the net surface heat flux shows a net gain of heat over the whole bay. The largest heat gain occurs near Matsukawaura, where the strong Kuroshio/Oyashio interaction produces anomalously cold SST and wind is more moderate than in other regions of Sendai Bay over most of the year. The lowest heat gain occurs around Tashiro Island, where the temperature difference between air and sea surface is lower and wind is stronger. The heat budget shows that both surface forcing and horizontal advection are potentially important contributors to the seasonal evolution of CSST in the bay. From the A VHRR and SeaWiFS data, it is found that offshore conditions between the bay and Eno Island are different due to the presence of the Ojika Peninsula. It is also shown that the temporal behaviors of SSTs in the bay are closely connected with the air-sea heat flux and offshore conditions.

Analysis of Sea Surface Temperature Simulation in the Northwestern Pacific and the East Asian Marginal Seas using HadGEM2-AO (HadGEM2-AO를 이용한 북서태평양-동아시아 해역의 표층 수온 모의 특성 분석)

  • Kim, Haejin;Kim, Cheol-Ho;Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.89-102
    • /
    • 2016
  • In this study, we evaluated the model performance with respect to Sea Surface Temperature (SST) and Net Heat Flux (NHF) by considering the characteristics of seasonal temperature variation and contributing factors and by analyzing heat budget terms in the Northwestern Pacific and East Asian Marginal Seas ($110^{\circ}E-160^{\circ}E$, $15^{\circ}N-60^{\circ}N$) using the HadGEM2-AO historical run. Annual mean SST of the HadGEM2-AO is about $0.065^{\circ}C$ higher than observations (EN3_v2a) from 1950 to 2000. Since 1960, the model has simulated well the long-term variation of SST and the increasing rate of SST in the model ($0.014^{\circ}C/year$) is comparable with observations ($0.013^{\circ}C/year$). Heat loss from the ocean to the atmosphere was simulated slightly higher in the HadGEM2-AO than that in the reanalysis data on the East Asian Marginal Seas and the Kuroshio region. We investigated the causes of temperature variation by calculating the heat budget equation in the two representative regions. In the central part of the Kuroshio axis ($125^{\circ}E-130^{\circ}E$, $25^{\circ}N-30^{\circ}N$: Region A), both heat loss in the upper mixed layer by surface heat flux and vertical heat advection mainly cause the decrease of heat storage in autumn and winter. Release of latent heat flux through the heat convergence brought about by the Kuroshio contributes to the large surface net heat flux. Positive heat storage rate is mainly determined by horizontal heat advection from March to April and surface net heat flux from May to July. In the central part of the subtropical gyre ($155^{\circ}E-160^{\circ}E$, $22^{\circ}N-27^{\circ}N$: Region B), unlike Region A, vertical heat advection predominantly causes the decrease of heat storage in autumn and winter. In spring and summer, surface heat flux contributes to the increase of heat storage in Region B and the period is two times longer than the period for Region A. In this season, shoaling of the mixed layer depth plays an important role in the increase of SST.

Local Enhancement Mechanism of Cold Surges over the Korean Peninsula (한반도 한파의 지역적 강화 메커니즘)

  • Lee, Hye-Young;Kim, Joowan;Park, In-Gyu;Kang, Hyungyu;Ryu, Hosun
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • This study investigates synoptic characteristics of cold surges over South Korea during winter season (December-February). A total of 63 cold events are selected by quantile regression analysis using daily mean temperature observations from 11 KMA stations for 38 years (1979/80-2016/17). Large-scale pressure pattern during the cold surges is well characterized by high over Siberia and low over Aleutian regions, which elucidates cold advection over the Korean peninsula. However, the large-scale pattern cannot successfully explain the observed sudden decrease of temperature during the cold surges. Composite analyses reveal that a synoptic-scale cyclone developing over the northern Japan is a key feature that significantly contribute to the enhancement of cold advection by increasing pressure gradient over the Korean peninsula. Enhanced sensible and latent heat fluxes are observed over the southern ocean of Korea and Japan during the cold surges due to temperature and humidity differences between the near surface and the lower atmosphere over the ocean. The evaporated water vapor transported toward the center of the surface cyclone and condenses in the lower-to-middle troposphere. The released energy likely promotes the development of the surface cyclone by inducing positive PV near the surface of the heating region.

A Simple Model of the Formation of Thermo-haline Front in the Southeastern Yellow Sea in Winter

  • Seung, Young-Ho;Shin, Sang-Ik
    • Journal of the korean society of oceanography
    • /
    • v.31 no.1
    • /
    • pp.23-31
    • /
    • 1996
  • The thermo-haline front frequently observed near the southwestern tip of Korean Peninsula is successfully modeled using a simple model. The front is formed by the wind-driven advection of local cooled water to the southern warm area which is kept warm by large heat advection of the Tsushima Current. The front thus locates north of the Tsushima Current which runs approximately along the isobaths in the east-west direction.

  • PDF

A Case Study on the Heat budget of the Marine Atmosphere Boundary Layer due to inflow of cloud on observation at Ulleungdo (울릉도에서 구름 유입시 관측한 해양대기경계층의 열수지에 관한 사례연구)

  • Kim, Hee-Jong;Yoon, Ill-Hee;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.629-636
    • /
    • 2004
  • In order to study developments of the marine atmosphere boundary layer in cloud incoming, important parameters like heat advection, surface layer heat flux, and radiation energy were estimated using the rawinsonde, AWS data, satellite images, and buoy data which was installed at the East Sea. We explained the variation and the development of mixed layer in terms of surface layer heat flux and long wave radiation under the cloudy sky. The heat flux was obtained by means of the bulk method. Conservation of heat was analysed by heat budget equation, which was consist of buoy data in the East sea, and sounding data at Ulleungdo and at Pohang. During the inflow of cloud, radiative cooling at the surface after was suppressed and long wave radiation from cloud played a role of warming. The surface layer temperature was also remained warm by influence of warm advection from south-easterly direction. The air temperature in night was increased, as a result, mixed layer was not destroyed and The nocturnal boundary layer was composed of the mixed layer and the residual layer.

Study on the Variation of Nighttime Cooling Rate Associated with Urbanization (도시화에 의한 야간 대기 냉각율 변화에 관한 연구)

  • Lee, Soon-Hwan;Park, Myung-Hee;Kim, Hea-Dong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • In order to clarify the urbanization intensity of Daegu Metropolitan and its characteristics, comparative study on the variation of the cooling rate of two different sites was carried out using observation data for 40 years by Korea Meteorological Adminstration. Daegu Metropolitan and Chupungnyung represent well urbanized and rural areas, respectively. In comparison with Chupungnyung, yearly mean temperature at Daegu Metropolitan increases rapidly and especially the differences of minimum temperature increasing rate during 40 years becomes greater. These differences of regional warming are caused by the different urbanization intensity between two sites. And the impact of anthropogenic heat due to urbanization should be stronger in nighttime than in daytime. Sensible heat advection by regional wind during 6 hours from 18 LST contributes to atmospheric cooling. For this reason wind speed is in proportion to cooling rate of atmosphere. However, wind after 24 LST induces the warm air advection and makes decrease the cooling rate in urban area. Although the cooling rates between Daegu Metropolitan and Chupungnyung are some different, the variation tendencies of cooling rate of two site are almost same. Therefore atmospheric cooling rate in nighttime tends to be associated with the intensity of wind speed.