Browse > Article
http://dx.doi.org/10.14191/Atmos.2019.29.4.381

Analysis of the Effects of Advection and Urban Fraction on Urban Heat Island Intensity using Unified Model for Seoul Metropolitan Area, Korea  

Hong, Seon-Ok (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
Kim, Do-Hyoung (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
Byon, Jae-Young (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
Park, HyangSuk (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
Ha, Jong-Chul (Applied Meteorology Research Division, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.29, no.4, 2019 , pp. 381-390 More about this Journal
Abstract
This study investigates the impacts of urban land-use fraction and temperature advection on the urban heat island intensity over the Seoul metropolitan area using the UM (Unified Model) with the MORUSES (Met Office Reading Urban Surface Exchange Scheme) during the heat wave over the region from 2 to 8, August 2016. Two simulations are performed with two different land-use type, the urban (urban simulation) and the urban surfaces replaced with grass (rural simulation), in order to calculate the urban heat island intensity defined as the 1.5-m temperature difference between the urban and the rural simulations. The land-use type for the urban simulation is obtained from Korea Ministry of Environment (2007) land-use data after it is converted into the types used in the UM. It is found that the urban heat island intensity over high urban-fraction regions in the metropolitan area is as large as 1℃ in daytime and 3.2℃ in nighttime, i.e., the effects of urban heat island is much larger for night than day. It is also found that the magnitude of urban heat island intensity increases linearly with urban land-use fraction. Spatially, the estimated the urban heat island intensities are systematically larger in the downwind regions of the metropolitan area than in the upwind area due to the effects of temperature advection. Results of this study indicate that urban surface fraction in the city area and temperature advection play a key role in determining the spatial distribution and magnitude of urban heat island intensity.
Keywords
Unified model; urban parameterization; urban heat island intensity; urban fraction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp.
2 Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357-397.   DOI
3 Tan, J., and Coauthors, 2010: The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol., 54, 75-84, doi:10.1007/s00484-009-0256-x.   DOI
4 Arnfield, A. J., 2003: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 1-26   DOI
5 Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114, 91-109.   DOI
6 Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.   DOI
7 Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Q. J. R. Meteorol. Soc., 137, 1625-1640, doi:10.1002/qj.855.   DOI
8 Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273-288, doi:10.1002/joc.2158.   DOI
9 Chen, F., X. Yang, and W. Zhu, 2014: WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res., 138, 364-377, doi:10.1016/j.atmosres.2013.12.005.   DOI
10 Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329-358.   DOI
11 Lee, S.-H., and J.-J. Baik, 2010: Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol., 100, 227-237, doi:10.1007/s00704-009-0247-1.   DOI
12 Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199.   DOI
13 Park, J. J., C. Y. Ku, and B. S. Kim, 2007: Improvement of the level-2 land cover map with satellite image. J. GIS Assoc. Kor., 15, 67-80 (in Korean with English abstract).
14 Oke, T. R., 1982: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc., 108, 1-24.   DOI
15 Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 526 pp.
16 Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: formulation and evaluation for Two cities. J. Appl. Meteor. Climatol., 47, 1038-1060.   DOI
17 Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010a: Implementation of a new urban energy budget scheme into MetUM. Part II: Validation against observations and model intercomparison. Q. J. R. Meteorol. Soc., 136, 1530-1542, doi:10.1002/qj.572.   DOI
18 Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010b: Implementation of a new urban energy budget scheme in the MetUM. Part I: Description and idealized simulations. Q. J. R. Meteorol. Soc., 136, 1514-1529, doi:10.1002/qj.668.   DOI
19 Sailor, D. J., 2001: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol., 31, 189-199.   DOI
20 UNDESA, 2014: World Urbanization Prospects: The 2014 revision. Methodology Working Paper No. ESA/P/WP.238, United Nations Department of Economic and Social Affairs, 27 pp.
21 Unnikrishnan, C. K., B. Gharai, S. Mohandas, A. Mamgain, E. N. Rajagopal, G. R. Iyenger, and P. V. N. Rao, 2016: Recent changes on land use/land cover over Indian region and its impact on the weather prediction using Unified model. Atmos. Sci. Lett., 17, 294-300, doi:10.1002/asl.658.   DOI
22 Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Q. J. R. Meteorol. Soc., 129, 1989-2010.   DOI
23 Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc., 125, 1607-1636.   DOI
24 Kanda, M., T. Kawai, M. Kanega, R. Moriwaki, K. Narita, and A. Hagishima, 2005: A simple energy balance model for regular building arrays. Bound.-Layer Meteor., 116, 423-443.   DOI
25 Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759-1782.   DOI
26 Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc., 122, 689-719.   DOI
27 Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: local-scale observations and evaluation of a simple model, J. Appl. Meteorol., 38, 922-940.   DOI
28 Hong, J.-W., J. Hong, S.-E. Lee, and J. Lee, 2013: Spatial distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul metropolitan area. Atmosphere, 23, 413-424 (in Korean with English abstract).   DOI
29 Hong, S.-O., J.-Y. Byon, H. Park, Y.-G. Lee, B.-J. Kim, and J.-C. Ha, 2018: Sensitivity analysis of near surface air temperature to land cover change and urban parameterization scheme using Unified Model, Atmosphere, 28, 427-441 (in Korean with English abstract).   DOI
30 Kim, Y.-H., and J.-J. Baik, 2004: Daily maximum urban heat island intensity in large cities of Korea. Theor. Appl. Climatol., 79, 151-164.   DOI