• Title/Summary/Keyword: Advances

Search Result 6,380, Processing Time 0.033 seconds

1 $Nm^3/h$ 규모 합성천연가스(SNG) 합성 시스템의 운전 특성 (Operating Characteristics of 1 $Nm^3/h$ Scale Synthetic Natural Gas(SNG) Synthetic Systems)

  • 김진호;강석환;류재홍;이선기;김수현;김문현;이도연;유영돈;변창대;임효준
    • Korean Chemical Engineering Research
    • /
    • 제49권4호
    • /
    • pp.491-497
    • /
    • 2011
  • 본 연구에서는 CO, $H_2$가 주성분인 모사합성가스를 이용하여 합성천연가스(SNG, Synthetic Natural Gas) 제조공정을 평가하기 위하여, 3종류의 SNG 합성반응시스템을 제안하였다. 제시된 공정은 다단 단열반응시스템, 재순환이 있는 다단 단열반응시스템 그리고 강제냉각방식의 수냉각반응시스템이다. 3개의 연속된 반응기로 구성된 다단 단열반응시스템에서의 1차반응기에서는 온도가 최대 $800^{\circ}C$까지 상승하였으며, 이로 인한 수성가스전환반응으로 인해 $CO_2$가 다른 시스템에 비해 많이 생성되었으며, SNG 내의 $CH_4$ 농도는 90.1% 정도를 얻었다. 다단 단열반응시스템의 문제점을 해결하기 위해 재순환이 있는 다단 단열반응시스템에서는 반응기의 온도제어를 위해 일부 전환가스를 재순환한 것으로, $CH_4$는 최대 96.3%를 얻었다. 이러한 다수개의 반응기로 구성된 단열반응기의 단점을 해결하여 반응기 개수를 줄일 수 있는 쉘과 튜브 형태의 반응기로 구성된 강제냉각방식의 수냉각시스템에서는 쉘 측으로 냉각수를 공급하여 반응열을 흡수하는 형태로, 공급되는 냉각수의 유량과 압력에 의해 온도를 제어할 수 있다. 이 시스템에서는 최대 $CH_4$는 최대 99.2%를 얻었으며, 1차 반응기인 강제냉각방식의 수냉각반응기 출구에서의 97% 이상의 $CH_4$ 농도를 얻을 수 있음을 확인하였다.

Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation

  • Kim, In-S.;Chae, Kyu-Jung;Choi, Mi-Jin;Verstraete, Willy
    • Environmental Engineering Research
    • /
    • 제13권2호
    • /
    • pp.51-65
    • /
    • 2008
  • The increasing demand for energy in the near future has created strong motivation for environmentally clean alternative energy resources. Microbial fuel cells (MFCs) have opened up new ways of utilizing renewable energy sources. MFCs are devices that convert the chemical energy in the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions, and the reduction of a terminal electron acceptor, most preferentially oxygen, at the cathode. Due to the rapid advances in MFC-based technology over the last decade, the currently achievable MFC power production has increased by several orders of magnitude, and niche applications have been extended into a variety of areas. Newly emerging concepts with alternative materials for electrodes and catalysts as well as innovative designs have made MFCs promising technologies. Aerobic bacteria can also be used as cathode catalysts. This is an encouraging finding because not only biofouling on the cathode is unavoidable in the prolonged-run MFCs but also noble catalysts can be substituted with aerobic bacteria. This article discusses some of the recent advances in MFCs with an emphasis on the performance, materials, microbial community structures and applications beyond electricity generation.

탐구 지향 미분방정식 교수-학습의 효과 분석 (Effects of Inquiry-oriented Differential Equations Instruction Based on the Realistic Mathematics Education)

  • 권오남;주미경
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제44권3호
    • /
    • pp.375-396
    • /
    • 2005
  • This paper reports on the main results of 3 study that compared students' beliefs, skills, and understandings in an innovative approach to differential equations to more conventional approaches. The innovative approach, referred to as the Realistic Mathematics Education Based Differential Equations (IODE) project, capitalizes on advances within the discipline of mathematics and on advances within the discipline of mathematics education, both at the K-12 and tertiary levels. Given the integrated leveraging of developments both within mathematics and mathematics education, the IODE project is paradigmatic of an approach to innovation in undergraduate mathematics, potentially sewing as a model for other undergraduate course reforms. The effect of the IODE projection maintaining desirable mathematical views and in developing students' skills and relational understandings as judged by the three assessment instruments was largely positive. These findings support our conjecture that, when coupled with careful attention to developments within mathematics itself, theoretical advances that initially grew out research in elementary school classrooms can be profitably leveraged and adapted to the university setting. As such, our work in differential equations may serve as a model for others interested in exploring the prospects and possibilities of improving undergraduate mathematics education in ways that connect with innovations at the K-12 level

  • PDF

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(I)
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF

Ultrafiltration as a pretreatment for seawater desalination: A review

  • Lau, W.J.;Goh, P.S.;Ismail, A.F.;Lai, S.O.
    • Membrane and Water Treatment
    • /
    • 제5권1호
    • /
    • pp.15-29
    • /
    • 2014
  • Reverse Osmosis (RO) desalination has gained wide and increasing acceptance around the world as a straightforward undertaking to alleviate the alarming water crisis. An enhanced monitoring of the quality of the water feeding in seawater RO (SWRO) plant through the application of an effective pretreatment option is one of the keys to the success of RO technology in desalination plants. Over the past 10 years, advances in ultrafiltration (UF) membrane technologies in application for water and wastewater treatment have prompted an impetus for using membrane pretreatment in seawater desalination plants. By integrating SWRO plant with UF pretreatment, the rate of membrane fouling can be significantly reduced and thus extend the life of RO membrane. With the growing importance and significant advances attained in UF pretreatment, this review presents an overview of UF pretreatment in SWRO plants. The advantages offered by UF as an alternative of pretreatment option are compared to the existing conventionally used technologies. The current progress made in the integration of SWRO with UF pretreatment is also highlighted. Finally, the recent advances pursued in UF technology is reviewed in order to provide an insight and hence path the way for the future development of this technology.

A review of recent research advances on structural health monitoring in Western Australia

  • Li, Jun;Hao, Hong
    • Structural Monitoring and Maintenance
    • /
    • 제3권1호
    • /
    • pp.33-49
    • /
    • 2016
  • Structural Health Monitoring (SHM) has been attracting numerous research efforts around the world because it targets at monitoring structural conditions and performance to prevent catastrophic failure, and to provide quantitative data for engineers and infrastructure owners to design a reliable and economical asset management strategy. In the past decade, with supports from Australian Research Council (ARC), Cooperative Research Center for Infrastructure and Engineering Asset Management (CIEAM), CSIRO and industry partners, intensive research works have been conducted in the School of Civil, Environmental and Mining Engineering, University of Western Australia and Centre for Infrastructural Monitoring and Protection, Curtin University on various techniques of SHM. The researches include the development of hardware, software and various algorithms, such as various signal processing techniques for operational modal analysis, modal analysis toolbox, non-model based methods for assessing the shear connection in composite bridges and identifying the free spanning and supports conditions of pipelines, vibration based structural damage identification and model updating approaches considering uncertainty and noise effects, structural identification under moving loads, guided wave propagation technique for detecting debonding damage, and relative displacement sensors for SHM in composite and steel truss bridges. This paper aims at summarizing and reviewing the recent research advances on SHM of civil infrastructure in Western Australia.

Advances and challenges in impedance-based structural health monitoring

  • Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • 제4권4호
    • /
    • pp.301-329
    • /
    • 2017
  • Impedance-based damage detection method has been known as an innovative tool with various successful implementations for structural health monitoring of civil structures. To monitor the local critical area of a structure, the impedance-based method utilizes the high-frequency impedance responses sensed by piezoelectric sensors as the local dynamic features. In this paper, current advances and future challenges of the impedance-based structural health monitoring are presented. Firstly, theoretical background of the impedance-based method is outlined. Next, an overview is given to recent advances in the wireless impedance sensor nodes, the interfacial impedance sensing devices, and the temperature-effect compensation algorithms. Various research works on these topics are reviewed to share up-to-date information on research activities and implementations of the impedance-based technique. Finally, future research challenges of the technique are discussed including the applicability of wireless sensing technology, the predetermination of effective frequency bands, the sensing region of impedance responses, the robust compensation of noise and temperature effects, the quantification of damage severity, and long-term durability of sensors.