• Title/Summary/Keyword: Advanced water treatment system

Search Result 202, Processing Time 0.03 seconds

Method for Simultaneous Determination of Cyanotoxins in Water by LC-MS/MS (액체크로마토그래프/질량분석기를 이용한 수중 남조독소물질 동시분석법)

  • Kim, Jeong-Hee;Yun, Mi-Ae;Kim, Hak-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.597-605
    • /
    • 2009
  • Algae bloom occurred in reservoir in summer can cause taste and odor in water and disturb the flocculation and sedimentation processes in water treatment plant and cause sand filter plugging. It was also reported that microcystins, anatoxin and saxitoxin released from cyanobacteria had acute toxic effects on liver and nervous system. For these reasons, many advanced countries inclusive of WHO set the guideline for these toxins and cyanotoxins have been managed with regular monitoring in Korea as well. However, complex sample preparation steps such as a solid phase extraction (SPE) and derivatization are required with an existing analysis method with HPLC. We needed to improve an analysis method for low extraction efficiency and long sample preparation time. In this study, we have established a new LC/MS/MS method which can simultaneously determine 6 cyanotoxins (Microcystins-LR, Microcystins-RR, Microcystins-YR, Anatoxin-a, Saxitoxin, Neosaxitoxin) with only simple filtration step. When $75{\mu}L$ filterated sample was injected onto the LC-MS/MS, the recovery ranged from 86% to 112% and the MDL was $0.025{\sim}0.581{\mu}g/L$. We can make the MDL be lower than the guideline ($1{\sim}3{\mu}g/L$) of advanced countries with simple preparation.

Effect of Municipal Sewage Treatment Plant on Water Quality in Western Kangwon Area (강원 영서지역 하수처리장이 수질에 미치는 영향)

  • Huh In-Ryang;Choi Ji-Yong;Kim Yeong-Jin;Jeong Ui-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.235-240
    • /
    • 2005
  • The effects of municipal sewage treatment plants on the water quality and effluent loading were investigated. BOD removal rates from Wonju, Hoengseong, and Hongcheon municipal sewage treatment plants were $88.9\%,\;80.6\%,\;90.7\%$ and T-P removal rates were $47.3\%,\;56.5\%,\;71.6\%,$ respectively. Also, BOD effluent leading from WonJu, Hoengseong, and Hongcheon treatment plants were 1,520 kg/day, 75 kg/day, 55 kg/day and T-P effluent loading were 203.9 kg/day, 4.2 kg/day, 4.0 kg/day, respectively. In terms of water quality distribution by distance of flow, BOD of the Seom river rapidly rose from 1.6 mg/l to 4.0 mg/l and T-P rose from 0.034 mg/l to 0.321 mg/l. Also BOD of the Hongcheon river showed a slowly rise from 1.1 mg/l to 1.4 mg/l and T-P from 0.011 mg/l to 0.026 mg/l. In conclusion, the effects of municipal sewage treatment plants on the water quality proved that T-P was higher than BOD. Consequently, in order to improve water quality, it is necessary to adopt an advanced sewage treatment system like nutrient removal.

A Study of the comparison of the treatment characteristics between ASA system and CAS system (고도단계유입폭기법과 표준활성슬러지법의 처리특성 비교)

  • Knag, Yong-Tae;Cho, Yong-Hyun;Han, Sang-Yun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.112-115
    • /
    • 2007
  • Currently an increase in domestic sewage and industrial wastewater causes serious water pollution in Korea. To solve water pollution problems, conventional activated sludge (CAS) system is generally used in wastewater treatment plant but this process is so ineffective in nitrogen and phosphorus. Even if CAS system is the major process, it must be improved instantly so as to remove nitrogen and phosphorus. Otherwise, the serious water pollution problems can't be resolved with CAS system. Therefore this study focused on the comparison of the treatment characteristics between ASA system and CAS system. And also the mass balance of each process of ASA system. The results from operating advanced step aeration (ASA) system indicated that the removal efficiency of BOD, COD, and SS was 89.9%, 74.5%, and 89.0% respectively. In comparison, the removal efficiency of BOD, COD, and SS for CAS system was 89.5%, 71.8%, and 89.5% respectively. In addition to the results, the TN removal efficiency of ASA system was 76.5% comparing to 32.7% of CAS system. It was concluded that the TN removal efficiency of ASA system was 44% higher than CAS system. And the TP removal efficiency was 81.4% in ASA system comparing to 25.2% in CAS system. It also means that over 56% of TP was removed in ASA system comparing to CAS system.

  • PDF

A Study on the Pretreatment Process for Sewage Reuse by Microfiltration Process (정밀여과에 의한 하수고도처리수의 재이용을 위한 전처리법에 관한 연구)

  • Kuk, Young-Long;Joo, Jae-Young;Bae, Yoon-Sun;Lee, Hye-In;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.595-601
    • /
    • 2010
  • It is evident that Korea will continue its battle with water shortage and alternative program are being taken into action. One of the main actions is reusing 1,800 tons of effluent of 357 sewage treatment plant located nationwide. Therefore this study supplemented ozone oxidation methods that would increase the efficiency of organic oxidation and coagulation. Through this method, fouling will be controled sufficiently by preventing membrane process in the system for advanced sewage treatment. In this study, ozone-coagulation-microfiltration membrane were used. The final removal efficiency of the pretreated water from the result of the ozone-coagulation were 50% of CODcr, 38% of TP and 11% of TOC respectively. Water quality treatment has decreased about 80% for TP. Ozone-coagulation-microfiltration membrane maintains the high flux while decreasing the number of organic matter and the membrane fouling, and reducing the TP. As a result, in order to reuse the water from the sewage, the ozone-coagulation-microfiltration membrane type must be considered in order to achieve the best efficiency.

Watershed Management Measures for Water Quality Conservation of the Hwaseong Reservoir using BASINS/HSPF Model (BASINS/HSPF 모델을 이용한 화성호 수질보전을 위한 상류 유역 수질개선방안 연구)

  • Kang, Hyeongsik;Jang, Jae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • HSPF model based on BASINS was applied to analyze effects of watershed management measures for water quality conservation in the Hwaseong Reservoir watershed. The model was calibrated against the field measurements of meteorological data, streamflow and water qualities ($BOD_5$, T-N, T-P) at each observatory for 4 years (2007-2010). The water quality characteristics of inflow streams were evaluated. The 4 scenarios for the water quality improvement were applied to inflow streams and critical area from water pollution based on previous researches. The reduction efficiency of point and non-point sources in inflow streams was evaluated with each scenario. The results demonstrate that the expansion of advanced treatment system within wastewater treatment plants (WWTPs) and construction of pond-wetlands would be great effective management measures. In order to satisfactory the target water quality of reservoir, the measures which can control both point source and non-point source pollutants should be implemented in the watershed.

Treatment Characteristics of 1,4-Dioxane by Advanced Oxidation Process System (AOP에 의한 1,4-다이옥산의 처리 특성에 관한 연구)

  • Lee, Soo;Kang, Hak-Su;Choi, Jae-Hyuk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.32-40
    • /
    • 2008
  • 1,4-Dioxane is an EPA priority pollutant often found in contaminated ground waters and industrial effluents. Conventional water treatment techniques are limited to decompose this compound effectively. Therefore, an advanced oxidation process system (AOP) was used for the degradation of 1,4-dioxane. This research investigates the effect of adding oxidants, such as ozone, air, and $H_2O_2$ during the UV irradiation of 1,4-dioxane solution. In order to analyze 1,4-dioxane, a modified 8270 method, which is an improved method of U.S EPA 8720, was used. Degradation efficiencies of 1,4-dioxane by only UV irradiation at various temperatures were not significant. However, The addition of oxidants and air bubbling in the UV irradiation system for 1,4-dioxane decomposition showed the higher 1,4-dioxane degradation rate. And, during AOP treatment the tendency of TOC changes was similar to that of 1,4-dioxane decomposition rate.

Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System (Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거)

  • Sohn, Jin-Sik;Park, Soon-Ho;Jung, Eui-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.

Seasonal variation of assimilable organic carbon and its impact to the biostability of drinking water

  • Choi, Yonkyu;Park, Hyeon;Lee, Manho;Lee, Gun-Soo;Choi, Young-june
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.501-512
    • /
    • 2019
  • The seasonal effects on the biostability of drinking water were investigated by comparing the seasonal variation of assimilable organic carbon (AOC) in full-scale water treatment process and adsorption of AOC by three filling materials in lab-scale column test. In full-scale, pre-chlorination and ozonation significantly increase $AOC_{P17\;(Pseudomonas\;fluorescens\;P17)}$ and $AOC_{NOX\;(Aquaspirillum\;sp.\;NOX)}$, respectively. AOC formation by oxidation could increase with temperature, but the increased AOC could affect the biostability of the following processes more significantly in winter than in warm seasons due to the low biodegradation in the pipes and the processes at low temperature. $AOC_{P17}$ was mainly removed by coagulation-sedimentation process, especially in cold season. Rapid filtration could effectively remove AOC only during warm seasons by primarily biodegradation, but biological activated carbon filtration could remove AOC in all seasons by biodegradation during warm season and by adsorption and bio-regeneration during cold season. The adsorption by granular activated carbon and anthracite showed inverse relationship with water temperature. The advanced treatment can contribute to enhance the biostability in the distribution system by reducing AOC formation potential and helping to maintain stable residual chlorine after post-chlorination.

A study on the device introduction of wastewater reclamation system a treated sewage (하수처리수를 활용한 중수도의 도입방안 연구)

  • Park, Rho-Sam;Park, Sang-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.23-33
    • /
    • 1999
  • After studying several methods of the application a device of a treated sewage in anticipation of the future shortage of the duty of water, we could have some conclusion as the following : Advanced treatment systems arc essential prerequisites in reusing a treated sewage. And in a short term, the application of reusing a treated sewage should go first to new building areas near the sewage but for the long run, it should cover the whole area of Taegu, it is desirable that the pipe line networks which include dual water systems as well as water supply should be spread throughout the whole city. The city authorities have to make every effort to step up publicity activities on this plan to all the citizens and building owners to steadily carry out this project and encourage private constructors to participate with the help of SOC. And for the long run, it is desirable that the application of reusing a treated sewage should be obligatory.

  • PDF

Removal of Ammonia Nitrogen and Reduction of THMs in Low Temperature by BAC Pilot Plant (BAC Pilot Plant 를 이용한 겨울철 암모니아성 질소 제거 및 THMs 변화)

  • Kang, Eun-Jo;Seo, Young-Jin;Lee, Won-Kwon;Chun, Pyoung-Hee;Lee, Ji-Hyung;Yoon, Jung-Hyo;Kim, Dong-Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.107-114
    • /
    • 1995
  • The raw drinking water quality is getting worse because of the winter drought and the conventional treatment system is'nt suitable to obtain the satisfied quality of water. So, the advanced water system, BAC(Biological Activated Carbon) process is said to be effective to remove dissolved organics and ammonia nitrogen. In our study, the BAC pilot plant using Nak-dong river water is tested in low temperature. Following results are found from the study. The ammonia nitrogen removal rate of BAC system using wood-based carbon (PICABIOL) was 99% in $6^{\circ}C$ temperature. Chlorine dosage in wood-based BAC effluent was reduced to 67% of that in sand filtered wate. It resulted from the removal of ammonia nitrogen. Also, THM formed by chlorine addition in wood-based BAC effluent was decreased to 65% of that in sand filtered water. In the case of dual-filter, the removal efficiency of ammonia nitrogen was increased 30% more than in conventional sand filter. According to this result, the ammonia nitrogen load to BAC system could be lessened by the use of dual-filter.

  • PDF