• Title/Summary/Keyword: Advanced photonics applications

Search Result 42, Processing Time 0.023 seconds

Highly Birefringent Slotted-porous-core Photonic Crystal Fiber with Elliptical-hole Cladding for Terahertz Applications

  • Lee, Yong Soo;Kim, Soeun;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 2022
  • We propose a photonic crystal fiber (PCF) with a slotted porous core and elliptical-hole cladding, for high birefringence in the terahertz regime. Asymmetry in the guided mode is obtained mainly by using arrays of elliptical air holes in the TOPAS® polymer cladding. We investigate the tradeoff between several structural parameters and find optimized values that can have a high birefringence while satisfying the single-mode condition. The optical properties in the terahertz regime are thoroughly analyzed in numerical simulations, using a full-vector finite-element method with the perfectly-matched-layer condition. In an optimal design, the proposed photonic crystal fiber shows a high birefringence of 8.80 × 10-2 and an effective material loss of 0.07 cm-1 at a frequency of 1 THz, satisfying the single-mode-guidance condition at the same time. The proposed PCF would be useful for various polarization-management applications in the terahertz range.

Bus-waveguide-width Dependence of Evanescent Wave Coupling in a Microring Resonator

  • Son, Seong-Jin;Kim, Suyeon;Yu, Nan Ei;Ko, Do-Kyeong
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.538-543
    • /
    • 2021
  • The evanescent wave coupling of a microring resonator is controlled by changing the gap distance between the bus waveguide and the microring waveguide. However, the interdependence of the bus waveguide's width and the coupling is not well understood. In this paper, we investigate the dependence of coupling strength on the bus waveguide's width. The strength of the evanescent wave coupling is analytically calculated using coupled-mode theory (CMT) and numerically calculated by three-dimensional finite-difference-time-domain (FDTD) simulation. The analytic and numerical simulation results show that the phase-matching condition in evanescent wave coupling does not provide maximum coupling strength, because both phase-matching and mode confinement influence the coupling. The analytic and simulation results for the evanescent coupling correspond to the experimental results. The optimized bus-waveguide width that provides maximum coupling strength results in intrinsic quality factors of up to 1.3 × 106. This study provides reliable guidance for the design of microring resonators, depending on various applications.

Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging

  • Zhang, Jizhen;Zhang, Xin;Tan, Shuanglong;Xie, Xiaolin
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Compared to one made of glass, an aluminum mirror features light weight, compact design, low cost, and quick manufacturing. Reflective mirrors and supporting structures can be made from the same material, to improve the athermal performance of the system. With the rapid development of ultraprecise machining technologies, the field of applications for aluminum mirrors has been developed rapidly. However, most of them are rotationally symmetric in shape, and are used for infrared applications. In this paper, the design and manufacture of an off-axis aluminum mirror used for a three-mirror-anastigmat (TMA) optical system at visible wavelengths is presented. An optimized, lightweight design provides a weight reduction of more than 40%, while the surface deformation caused by earth's gravity can meet the required tolerance. The two pieces of an off-axis mirror can be diamond-turned simultaneously in one setup. The centrifugal deformation of the off-axis mirror during single-point diamond turning (SPDT) is simulated through the finite-element method (FEM). The techniques used to overcome centrifugal deformation are thoroughly described in this paper, and the surface error is reduced to about 1% of the original value. After post-polishing, the form error is $1/30{\lambda}$ RMS and the surface roughness is better than 5 nm Ra, which can meet the requirements for visible-light imaging.

Performance Test and Analysis of the Laser Radar System Prototype for Mapping Application (맵핑용 레이저 레이더 시스템 실험실 시제의 성능시험 및 분석)

  • Jo, Min-Sik;Lee, Chang-Jae;Kang, Eung-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.197-202
    • /
    • 2012
  • We present the results of performance test and analysis of a laser radar system prototype for mapping applications. The laser radar system consisting of fiber laser and avalanche photo-detector and other related component modules was designed and manufactured. The laser radar system now has the status of a prototype for the testing of laboratory performance. Main performance parameters of the system such as laser source characteristics, range accuracy, extinction ratio, and false alarm rate were experimentally measured and the results were analyzed. It confirmed that the laser radar system prototype is performing at a proper level.

Electrical Bistable Characteristics of Organic Charge Transfer Complex for Memory Device Applications

  • Lee, Chang-Lyoul
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.278-283
    • /
    • 2015
  • In this work, the electrical bistability of an organic CT complex is demonstrated and the possible switching mechanism is proposed. 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tetracyanoquinodimethane (TCNQ) are used as an organic donor and acceptor, respectively, and poly-methamethylacrylate (PMMA) is used as a polymeric matrix for spin-coating. A device with the Al/($Al_2O_3$)/PMMA:BCP:TCNQ[1:1:0.5 wt%]/Al configuration demonstrated bistable and switching characteristics similar to Ovshinsky switching with a low threshold voltage and a high ON/OFF ratio. An analysis of the current-voltage curves of the device suggested that electrical switching took place due to the charge transfer mechanism.

Measurement of the group-delay dispersion of optical elements using white-light interferometry (백색광 간섭계를 이용한 광학소자의 군지연분산 측정)

  • Tayyab Imran;Hong, Kyung-Han;Yu, Tae-Jun;Nam, Chang-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.248-249
    • /
    • 2003
  • The characterization of laser mirrors is important for obtaining proper performance of femtosecond lasers. Characteristics of laser mirrors are usually described in terms of their reflectivity at a certain wavelength. In femtosecond laser applications, however, the dispersion property of the mirror should be considered because the temporal shape of a femtosecond light pulse changes during the reflection at the mirrors. (omitted)

  • PDF

Design and Experimental Demonstration of Coaxially Folded All-reflective Imaging System

  • Xiong, Yupeng;Dai, Yifan;Chen, Shanyong;Tie, Guipeng
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.227-235
    • /
    • 2019
  • With slimmer, lighter and all-reflective imaging systems in high demand for consumer and military applications, coaxially folded optical image systems are widely considered because they can extend focal length and reduce track length. Most of these systems consist of multiple surfaces, and these surfaces are machined on one element or grouping processing on two elements. In this paper, we report and first experimentally demonstrate an all-aluminum all-reflective optical system which consists of two optical elements, with two high order aspherical surfaces in each element. The coaxially folded system is designed with Seidel aberration theory and advanced optimization with Zemax. The system is made of all-aluminum material processing by single point diamond turning (SPDT). On this basis, we completed the system integration and performed an imaging experiment. The final system has the advantages of short track length and long focal length and broad application prospects in the micro-unmanned aerial vehicle field.

Synthesis of all-inorganic halide perovskite nanocrystal and film fabrication for application in highly efficient optoelectronic device (고효율 광전자 소자 응용을 위한 전 무기 할라이드 페로브스카이트 나노결정 합 성 및 필름 제작)

  • Choi, Seung Hee;Kim, Hyun Bin;Yoo, Jung Hyeon;Kwon, Seok Bin;Jeong, Seong Guk;Song, Young Hyun;Yoon, Dae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.106-111
    • /
    • 2018
  • Halide perovskite nanocrystals have become attractive for LED applications due to their high color purity and excellent luminescent properties. $CsPbX_3$ (X = I, Br, and Cl) nanocrystals were synthesized by hot-injection method and the emission wavelength was controlled by changing the composition of halide ion. Green- and red-emitting films were fabricated using a polymer binder. The outstanding optical properties of the synthesized nanocrystals and fabricated films were confirmed. The wLED designed by green- and red-emitting perovskite nanocrystal films on blue InGaN LED was characterized.

Photorealistic Ray-traced Visualization Approach for the Interactive Biomimetic Design of Insect Compound Eyes

  • Nguyen, Tung Lam;Trung, Hieu Tran Doan;Lee, Wooseok;Lee, Hocheol
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.699-710
    • /
    • 2021
  • In this study, we propose a biomimetic optical structure design methodology for investigating micro-optical mechanisms associated with the compound eyes of insects. With these compound eyes, insects can respond fast while maintaining a wide field of view. Also, considerable research attention has been focused on the insect compound eyes to utilize these benefits. However, their nano micro-structures are complex and challenging to demonstrate in real applications. An effectively integrated design methodology is required considering the manufacturing difficulty. We show that photorealistic ray-traced visualization is an effective method for designing the biomimetic of a micro-compound eye of an insect. We analyze the image formation mechanism and create a three-dimensional computer-aided design model. Then, a ray-trace visualization is applied to observe the optical image formation. Finally, the segmented images are stitched together to generate an image with a wide-angle; the image is assessed for quality. The high structural similarity index (SSIM) value (approximately 0.84 to 0.89) of the stitched image proves that the proposed MATLAB-based image stitching algorithm performs effectively and comparably to the commercial software. The results may be employed for the understanding, researching, and design of advanced optical systems based on biological eyes and for other industrial applications.

Adiabatic Optical-fiber Tapers for Efficient Light Coupling between Silicon Waveguides and Optical Fibers (실리콘 도파로와 광섬유 사이의 효율적인 광 결합을 위한 아디아바틱 광섬유 테이퍼)

  • Son, Gyeongho;Choi, Jiwon;Jeong, Youngjae;Yu, Kyoungsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.213-217
    • /
    • 2020
  • In this study we report a wet-etching-based fabrication method for adiabatic optical-fiber tapers (OFTs), and describe their adiabaticity and HE11 mode evolution at a wavelength of 1550 nm. The profile of the fabricated system satisfies the adiabaticity properties well, and the far-field pattern from the etched OFT shows that the fundamental HE11 mode is maintained without a higher-order mode coupling throughout the tapers. In addition, the measured far-field pattern agrees well with the simulated result. The proposed adiabatic OFTs can be applied to a number of photonic applications, especially fiber-chip packages. Based on the fabricated adiabatic OFT structures, the optical transmission to the inversely tapered silicon waveguide shows large spatial-dimensional tolerances for 1 dB excess loss of ~60 ㎛ (silicon waveguide angle of 1°) and insertion loss of less than 0.4 dB (silicon waveguide angle of 4°), from the numerical simulation. The proposed adiabatic coupler shows the ultrabroadband coupling efficiency over the O- and C-bands.