Browse > Article
http://dx.doi.org/10.3807/KJOP.2020.31.5.213

Adiabatic Optical-fiber Tapers for Efficient Light Coupling between Silicon Waveguides and Optical Fibers  

Son, Gyeongho (School of Electrical Engineering, Korea Advanced Institute of Science and Technology,)
Choi, Jiwon (School of Electrical Engineering, Korea Advanced Institute of Science and Technology,)
Jeong, Youngjae (School of Electrical Engineering, Korea Advanced Institute of Science and Technology,)
Yu, Kyoungsik (School of Electrical Engineering, Korea Advanced Institute of Science and Technology,)
Publication Information
Korean Journal of Optics and Photonics / v.31, no.5, 2020 , pp. 213-217 More about this Journal
Abstract
In this study we report a wet-etching-based fabrication method for adiabatic optical-fiber tapers (OFTs), and describe their adiabaticity and HE11 mode evolution at a wavelength of 1550 nm. The profile of the fabricated system satisfies the adiabaticity properties well, and the far-field pattern from the etched OFT shows that the fundamental HE11 mode is maintained without a higher-order mode coupling throughout the tapers. In addition, the measured far-field pattern agrees well with the simulated result. The proposed adiabatic OFTs can be applied to a number of photonic applications, especially fiber-chip packages. Based on the fabricated adiabatic OFT structures, the optical transmission to the inversely tapered silicon waveguide shows large spatial-dimensional tolerances for 1 dB excess loss of ~60 ㎛ (silicon waveguide angle of 1°) and insertion loss of less than 0.4 dB (silicon waveguide angle of 4°), from the numerical simulation. The proposed adiabatic coupler shows the ultrabroadband coupling efficiency over the O- and C-bands.
Keywords
Fiber tapers; Adiabaticity; Fiber coupler; Integrated photonics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletic, and M. D. Lukin, "Efficient fiber-optical interface for nanophotonic devices," Optica 2, 70-75 (2015).   DOI
2 S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, and T. Wang, "High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD," Opt. Express 23, 13880-13888 (2015).   DOI
3 P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, "Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels," Opt. Lett. 30, 1273-1275 (2005).   DOI
4 G. Son, Y. Jung, and K. Yu, "Liquid droplet sensing using twisted optical fiber couplers fabricated by hydrofluoric acid flow etching," in Proc. 25th International Conference on Optical Fiber Sensors (OFS25) (Jeju, Korea, Apr. 2017) pp. 1-4.
5 G. Son, Y. Jung, and K. Yu, "Tapered optical fiber couplers fabricated by droplet-based chemical etching," IEEE Photon. J. 9, 7105208 (2017).
6 F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, "Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics," Neuron 82, 1245-1254 (2014).   DOI
7 F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. S ileo, J. E. Markowitz, R. E Peterson, A. D. Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, "Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber," Nat. Neurosci. 20, 1180-1188 (2017).   DOI
8 T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. J. Vahala, and H. J. Kimble, "Observation of strong coupling between one atom and a monolithic microresonator," Nature 443, 671-674 (2006).   DOI
9 V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, "Atom trapping and guiding with a subwavelengthdiameter optical fiber," Phys. Rev. A 70, 011401 (2004).   DOI
10 T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletic, and M. D. Lukin, "Nanophotonic quantum phase switch with a single atom," Nature 508, 241-244 (2014).   DOI
11 T. A. Birks, W. J . Wadsworth, and P. S . J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).   DOI
12 M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008).   DOI
13 G. Son, S. Han, J. Park, K. Kwon, and K. Yu, "High-efficiency broadband light coupling between optical fibers and photonic integrated circuits," Nanophotonics 7, 1845-1864 (2018).   DOI
14 L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).   DOI
15 J. M. Ward, A. Maimaiti, V. H. Le, and S. N. Chormaic, "Contributed Review: Optical micro-and nanofiber pulling rig," Rev. Sci. Instrum. 85, 111501 (2014).   DOI
16 J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered single-mode fibres and devices. I. Adiabaticity criteria," IEE Proc. J - Optoelectron. 138, 343-354 (1991).   DOI
17 G. Son and K. Yu, "High-efficiency power transfer for silicon-based photonic devices," Proc. SPIE 10526, 1052616 (2018).
18 P.-G. De Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves ( Springer, NY, U S A, 2013).
19 P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, "Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors," J. Appl. Phys. 85, 3395-3398 (1999).   DOI