• Title/Summary/Keyword: Advanced oxidation processes (AOPs)

Search Result 32, Processing Time 0.024 seconds

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.191-214
    • /
    • 2020
  • The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.

Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater

  • Verma, Manisha;Haritash, A.K.
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • Pharmaceutically active compounds (PhACs) have become an environmental havoc in last few decades with reported cases of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), lethal effects over aquatic organisms, interference in natural decomposition of organic matter, reduced diversity of microbial communities in different environmental compartments, inhibition of growth of microbes resulting in reduced rate of nutrient cycling, hormonal imbalance in exposed organisms etc. Owing to their potential towards bioaccumulation and persistent nature, these compounds have longer residence time and activity in environment. The conventional technologies of wastewater treatment have got poor efficiency towards removal/degradation of PhACs and therefore, modern techniques with efficient, cost-effective and environment-friendly operation need to be explored. Advanced oxidation processes (AOPs) like Photocatalysis, Fenton oxidation, Ozonation etc. are some of the promising, viable and sustainable options for degradation of PhACs. Although energy/chemical or both are essentially required for AOPs, these methods target complete degradation/mineralization of persistent pollutants resulting in no residual toxicity. Considering the high efficiency towards degradation, non-toxic nature, universal viability and acceptability, AOPs have become a promising option for effective treatment of chemicals with persistent nature.

Degradation Characteristic of Endocrine Disruptors (DEP, NP) Using Combined Advanced Oxidation Processes (AOPs) (혼합된 고급산화공정(AOPs)을 이용한 내분비계장애물질(DEP, NP)의 분해특성 연구)

  • Na, Seung-Min;Ahn, Yun-Gyong;Cui, Ming-Can;Cho, Sang-Hyun;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.231-239
    • /
    • 2011
  • Diethyl phthalate (DEP) and nonylphenol (NP) are widely spread in the natural environment as an endocrine disruption chemicals (EDs). Therefore, in this study, ultrasound (US) and ultraviolet (UVC), including $TiO_2$, as advanced oxidation processes (AOPs) were applied to a DEP and NP contaminated solution. When only the application of US, the optimum frequency for significant DEP degradation and a high rate of hydrogen peroxide ($H_2O_2$) formation was 283 kHz. We know that the main mechanism of DEP degradation is radical reaction and, NP can be affected by both of radical reaction and pyrolysis through only US (sonolysis) process and combined US+UVC (sonophotolysis) process. At combined AOPs (sonophotolysis/sonophotocatalysis) such as US+UVC and US+UVC+$TiO_2$, significant degradation of DEP and NP were observed. Enhancement effect of sonophotolysis and sonophotocatalysis system of DEP and NP were 1.68/1.38 and 0.99/1.17, respectively. From these results, combined sonophotocatalytic process could be more efficient system to obtain a significant DEP and NP degradation.

Treatment of Refractory Dye Wastewater Using AOPs (고도산화공정(AOPs)을 이용한 난분해성 염색폐수 처리)

  • Kim, Jong-Oh;Lee, Kwon-Ki;Jung, Jong-Tae;Kim, Young-Noh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.21-29
    • /
    • 2006
  • The treatment performance of ozonation and three types of advanced oxidation processes (AOPs) such as $O_3/H_2O_2$, $O_3/UV$, $O_3/H_2O_2/UV$ was experimentally investigated for the treatment of refractory synthetic dye wastewater. The removal efficiency of $COD_{cr}$, color and biodegradability ($BOD_5/COD_{cr}$) were relatively evaluated in each treatment unit with simulated dye wastewater. Optimal operational conditions of pH, temperature, dosage and circulation flow rate were also investigated. All suggested processes revealed an effectiveness for the removal of color within a short operational time, moreover, $O_3/H_2O_2/UV$ process showed the highest $COD_{cr}$ removal and biodegradability enhancement among proposed oxidation process.

  • PDF

Degradation Of 4-chlorophenol By Photo-Fenton Process and Fenton Process in Aqueous Solutions (광펜톤반응과 펜톤반응에 의한 수중 클로로페놀 분해비교연구)

  • Kim, Hyun-Seung;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.463-469
    • /
    • 2011
  • The degradation of 4-chlorophenol by various AOPs(Advanced Oxidation Processes) including the Fenton and the photo-Fenton process has been examined. In sole Fe, UV or $H_2O_2$ process without combination, low removal efficiencies have been achieved. But the photo-Fenton process showed higher removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process. Generally more hydrogen peroxide was required to achieve higher removal efficiencies of 4-CP at constant dosage of $FeSO_4$ in both of the Fenton and the photo-Fenton processes. Based on the results, The photo-Fenton process is proposed to be the most efficient alternative for degradation of 4-chlorophenol among the processes studied in this research.

A Study on Dissolve and Remove Analysis of Pollutants in Drinking Water by Suspected Cancer Causing Organic Chemicals using AOPs (Advanced Oxidation Processes) & M/F Hybird Process (고도산화와 정밀여과막 혼성공정을 이용한 먹는 물에 존재하는 발암원인으로 의심되는 유기화학성분의 분해 및 제거분석에 관한 연구)

  • An, Tai-Young;Park, Mi-young;Hur, Jang-hyun;Jun, Sang-ho;Han, Mi-Ae;An, Yoon-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.193-200
    • /
    • 2007
  • The AOPs research defined by creating a sufficient amount of OH radicals from the dissolution of organic materials through photoxidation and research for a complete elimination of residual organic materials by membrane are actively ongoing. This research focuses on the hybrid processing of AOPs and M/F membrane to dissolve and eliminate organic chemicals in drinking water which are suspected of carcinogens. For this purpose, underground water was used as a source of drinking water for the hybrid processing of AOPs oxidation and M/F membrane, and a pilot plant test device was installed indoor. Carcinogenic chemicals of VOCs and pesticide were artificially mixed with the drinking water, which was then diluted close to natural water in order to examine treatment efficiency and draw optimal operation conditions. The samples used for this experiment include four chemicals phenol, chloroform, in VOCs and parathion, carbaryl in pesticide. As a result of the experiments conducted with simple, and compound solutions, the conditions to sufficiently dissolve and eliminate carcinogenic chemicals from the hybrid processing of where carcinogens were artificially added are : (hydrogen peroxide) prescribed solution 100 mg/L under pH 5.5~6.0, and the temperature $12{\sim}16^{\circ}C$, at the normal temperature and pressure. $d-O_3$ volume of 5.0 ppm and above and 30-40 minutes of reaction time are most appropriate and using MF/UF for membrane was ideal.

Occurrence and removals of micropollutants in water environment

  • Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • Micropollutants are often discharged to surface waters through untreated wastewater from sewage treatment plants and wastewater treatment plants. The presence of micropollutants in surface waters is a serious concern because surface water is usually provided to water treatment plants (WTP) to produce drinking water. Many micropollutants can withstand conventional WTP systems and stay in tap water. In particular, pharmaceuticals and endocrine disruptors are examples of micropollutants that are detected at the drinking water, ppb, or even ppb level. A variety of techniques and processes, especially advanced oxidation processes, have been applied to remove micropollutants from water to control drinking water contamination. This paper reviews recent researches on the occurrence and removal of micropollutants in the aquatic environments and during water treatment processes.

Degradation of 2-Chlorophenol in the Aqueous Phase by a Photo-Fenton Process (광펜톤 반응에 의한 수중 2-클로로페놀 분해특성연구)

  • Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.779-786
    • /
    • 2012
  • The degradation of 2-chlorophenol(2-CP) by various AOPs(Advanced Oxidation Processes) including the photo-Fenton process has been examined. In sole $Fe^{2+}$, UV or $H_2O_2$ process without combination, low removal efficiencies have been achieved. But the photo-Fenton process showed higher removal efficiency for degradation of 2-chlorophenol than those of other AOPs including the Fenton process and the UV processes. In the photo-Fenton process, the optimal experimental conditions of 2-chlorophenol degradation were obtained at pH 3 and the $Fe^{2+}/H_2O_2$molar ratio of 1. Also the 2-chlorophenol removal efficiency increased with decreasing of the initial 2-chlorophenol concentration. 3-chlorocatechol and chlorohydroquinone were identified as photo-Fenton reaction intermediates, and a degradation pathway of 2-chlorophenol in the aqueous phase during the photo-Fenton reaction was proposed.

Evaluation of Advanced Oxidation Process(AOP) as a Pretreatment Process of Biological Activated Carbon in Drinking Water Treatment (정수처리에서 생물활성탄의 전처리로서 고급산화처리법의 평가)

  • Kim Woo-Hang
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.725-730
    • /
    • 1999
  • The advanced oxidation process (AOP) using ozone combined with hydrogen peroxide and ultraviolet treatment were evaluated for biodegradable dissolved organic carbon (EDOC) formation and dissolved organic carbon (DOC) removal. Oxidation treatment were conducted alone or combination with ozone, hydrogen peroxide and ultraviolet processes. Ozone dosage of ozone process was varied from $0.5mg/l{\ell}\cdot}min$ to $5mg/{\ell}{\cdot}min$. Ozone/hydrogen peroxide process was done using $20mg/{\ell}{\cdot}min$ of hydrogen peroxide concentration. Ozone/ultraviolet process was irradiated with $12mW/cm^2$ of density and 254nm. Ozone dosage was varied from $0.5mg/{\ell}{\cdot}min$ to $5mg/{\ell}{\cdot}min$ at the ozone/hydrogen peroxide and ozone/ultraviolet processes too. Contact time of all the process was 20 minutes. Oxidation treatment were performed on microfiltration effluent samples. BDOC formation was reached to an optimum at ozone dosage of $1.5mg/{\ell}{\cdot}min$ in the ozone/hydrogen peroxide process and $1mg/{\ell}{\cdot}min$ in ozone/ultraviolet process, after which BDOC formation was decreased at higher ozone dosages. But BDOC formation was increased with ozone dosages increasing in ozone process. The efficiency of DOC removal was higher AOPs than ozone process. Ozone/ultraviolet proces was the highest for DOC removal efficiency in each process. THMFP. removal efficiency by ozone/ultraviolet process was higher than that by each of ozone process and ozone/hydrogen peroxide process.

  • PDF

Plasma & Photocatalysis for The Treatment of Indoor Air (실내공기 처리용 플라즈마와 광촉매반응)

  • 김재철;장중철;김동현;최경일;한소영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.71-72
    • /
    • 2003
  • 고도산화방식(AOPs: Advanced Oxidation Processes)을 이용한 수질 및 공기오염물질 처리 관련 연구가 국내에서 지난 수년간 다수 진행되었으며 현재도 진행되고 있다. 특히 근래에는 공기오염물질 처리에 관한 연구가 활발하게 진행되고 있는데, 이는 향후 시행될 실내공기질 규제에 많은 관심이 집중되고 있기 때문인 것으로 보인다. 공기처리, 특히 실내공기 처리에 적용될 가능성이 있는 기존의 방법들 중에서 플라즈마와 광촉매반응(Ollis, 1993)이 가장 적용 타당성이 높은 것으로 판단된다. (중략)

  • PDF