• Title/Summary/Keyword: Advanced innovation

Search Result 737, Processing Time 0.023 seconds

Construction of Strontium Titanate/Binary Metal Sulfide Heterojunction Photocatalysts for Enhanced Visible-Light-Driven Photocatalytic Activity

  • Yu, Yongwei;Yang, Qing;Ma, Jiangquan;Sun, Wenliang;Yin, Chong;Li, Xiazhang;Guo, Jun;Jiang, Qingyan;Lu, Zhiyuan
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850130.1-1850130.12
    • /
    • 2018
  • A novel strontium titanate/binary metal sulfide ($SrTiO_3/SnCoS_4$) heterostructure was synthesized by a simple two-step hydrothermal method. The visible-light-driven photocatalytic performance of $SrTiO_3/SnCoS_4$ composites was evaluated in the degradation of methyl orange (MO) under visible light irradiation. The photocatalytic performance of $SrTiO_3/SnCoS_4-5%$ is much higher than that of pure $SrTiO_3$, $SnCoS_4$, $SrTiO_3/SnS_2$ and $SrTiO_3/CoS_2$. The $SrTiO_3/SnCoS_4$ composite material with 5 wt.% of $SnCoS_4$ showed the highest photocatalytic efficiency for MO degradation, and the degradation rate could reach 95% after 140 min irradiation time. The enhanced photocatalytic activity was ascribed to not only the improvement of visible light absorption efficiency, but also the construction of a heterostructure which make it possible to effectively separate photoexcited electrons and holes in the two-phase interface.

A Journal-Article-Based Study on the Dynamic Characteristics of Innovation Sources of Advanced Metals Technology (논문정보를 활용한 첨단 금속재료기술 혁신원천의 동태적 특성 분석)

  • Chae Jae-Woo;Cho Kyu-Kab;Kim Jeong-Hum;Lee Yong-Tai
    • Journal of Korea Technology Innovation Society
    • /
    • v.8 no.3
    • /
    • pp.1027-1059
    • /
    • 2005
  • The purpose of this paper is to analyze the dynamic characteristics of innovation sources such as scientific knowledges, processing technologies and user's needs in advanced metals technology. The journal articles data of four advanced materials are analyzed; amorphous metals, superplastic materials, shape memory alloys and aluminum-lithium alloy. Some regularities are found from the analysis of the four materials. The innovation proceeds through close interactions among the innovation sources. As the innovation proceeds, the relative importance of each source changes: scientific knowledge initiates the innovation and becomes the most important source in the first phase, then the processing technologies increase importance in the second phase, and then scientific knowledge, again, becomes the leading factor of innovation. Scientific knowledge and processing technology take turns leading the innovation. The impacts of users' needs to the innovation increase more and more as innovation proceeds. The results of analysis imply to the policy makers that emphasis of policy, and therefore the allocation of sources for innovation, should vary along the phases in the life cycle of advanced metals technology.

  • PDF

Cold-Stress Response of Probiotic Lactobacillus plantarum K25 by iTRAQ Proteomic Analysis

  • Liu, Shaoli;Ma, Yimiao;Zheng, Yi;Zhao, Wen;Zhao, Xiao;Luo, Tianqi;Zhang, Jian;Yang, Zhennai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • To understand the molecular mechanism involved in the survivability of cold-tolerant lactic acid bacteria was of great significance in food processing, since these bacteria play a key role in a variety of low-temperature fermented foods. In this study, the cold-stress response of probiotic Lactobacillus plantarum K25 isolated from Tibetan kefir grains was analyzed by iTRAQ proteomic method. By comparing differentially expressed (DE) protein profiles of the strain incubated at 10℃ and 37℃, 506 DE proteins were identified. The DE proteins involved in carbohydrate, amino acid and fatty acid biosynthesis and metabolism were significantly down-regulated, leading to a specific energy conservation survival mode. The DE proteins related to DNA repair, transcription and translation were up-regulated, implicating change of gene expression and more protein biosynthesis needed in response to cold stress. In addition, two-component system, quorum sensing and ABC (ATP-binding cassette) transporters also participated in cell cold-adaptation process. These findings provide novel insight into the cold-resistance mechanism in L. plantarum with potential application in low temperature fermented or preserved foods.

Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor

  • Li, Yi;Chen, Jun;Han, Xiao;Li, Yinghui;Zhang, Ziqiang;Ma, Yanwen
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850146.1-1850146.9
    • /
    • 2018
  • The rapid development of smart textiles requires the large-scale fabrication of conductive fibers. In this study, we develop a simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength. Fiber-shaped flexible and stretchable conductors are obtained by coating highly conductive and flexible silver nanowires (Ag NWs) on the surfaces of yarn and PDMS fibers through evaporation-induced flow and capillary-driven self-assembly, which is proven by the in situ optical microscopic observation. The density of Ag NWs and linear resistance of the conductive fibers could be regulated by tuning the assembly cycles. A linear resistance of $1.4{\Omega}/cm$ could be achieved for the Ag NWs-coated nylon, which increases only 8% after 200 bending cycle, demonstrating high flexibility and mechanical stability. The flexible and stretchable conductive fibers have great potential for the application in wearable devices.

An optimization design study of producing transuranic nuclides in high flux reactor

  • Wei Xu;Jian Li;Jing Zhao;Ding She;Zhihong Liu;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2723-2733
    • /
    • 2023
  • Transuranic nuclides (such as 238Pu, 252Cf, 249Bk, etc.) have a wide range of application in industry, medicine, agriculture, and other fields. However, due to the complex conversion chain and remarkable fission losses in the process of transuranic nuclides production, the generation amounts are extremely low. High flux reactor with high neutron flux and flexible irradiation channels, is regarded as the promising candidate for producing transuranic nuclides. It is of great significance to increase the conversion ratio of transuranic nuclides, resulting in higher efficiency and better economy. In this paper, we perform an optimization design evaluation of producing transuranic nuclides in high flux reactor, which includes optimization design of irradiation target and influence study of reactor core loading. It is demonstrated that the production rate increases with appropriately determined target material and target structure. The target loading scheme in the irradiation channel also has a significant influence on the production of transuranic nuclides.

Conceptual design study on Plutonium-238 production in a multi-purpose high flux reactor

  • Jian Li;Jing Zhao;Zhihong Liu;Ding She;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.147-159
    • /
    • 2024
  • Plutonium-238 has always been considered as the one of the promising radioisotopes for space nuclear power supply, which has long half-life, low radiation protection level, high power density, and stable fuel form at high temperatures. The industrial-scale production of 238Pu mainly depends on irradiating solid 237NpO2 target in high flux reactors, however the production process faces problems such as large fission loss and high requirements for product quality control. In this paper, a conceptual design study of producing 238Pu in a multi-purpose high flux reactor was evaluated and analyzed, which includes a sensitivity analysis on 238Pu production and a further study on the irradiation scheme. It demonstrated that the target structure and its location in the reactor, as well as the operation scheme has an impact on 238Pu amount and product quality. Furthermore, the production efficiency could be improved by optimizing target material concentration, target locations in the core and reflector. This work provides technical support for irradiation production of 238Pu in high flux reactors.

Experimental measurement of stiffness coefficient of high-temperature graphite pebble fuel elements in helium at high temperatures

  • Minghao Si;Nan Gui;Yanfei Sun;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1679-1686
    • /
    • 2024
  • Graphite material plays an important role in nuclear reactors especially the high-temperature gas-cooled reactors (HTGRs) by its outstanding comprehensive nuclear properties. The structural integrity of graphite pebble fuel elements is the first barrier to core safety under any circumstances. The correct knowledge of the stiffness coefficient of the graphite pebble fuel element inside the reactor's core is significant to ensure the valid design and inherent safety. In this research, a vertical extrusion device was set up to measure the stiffness coefficient of the graphite pebble fuel element by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. The stiffness coefficient equations of graphite pebble fuel elements at different temperatures are given (in a helium atmosphere). The result first provides the data on the high-temperature stiffness coefficient of pebbles in helium gas. The result will be helpful for the engineering safety analysis of pebble-bed nuclear reactors.

Characterization and Antioxidant Activity of the Exopolysaccharide Produced by Bacillus amyloliquefaciens GSBa-1

  • Zhao, Wen;Zhang, Jian;Jiang, Yun-Yun;Zhao, Xiao;Hao, Xiao-Na;Li, Liu;Yang, Zhen-Nai
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1282-1292
    • /
    • 2018
  • The exopolysaccharide (EPS) produced by Bacillus amyloliquefaciens GSBa-1 was isolated and purified by ethanol precipitation, and DEAE-cellulose and Sepharose CL-6B chromatographies. The molecular mass of the purified EPS was determined to be 54 kDa. Monosaccharide analysis showed that the EPS was composed of predominantly glucose, and it was further confirmed by NMR spectroscopy to be ${\alpha}-glucan$ that consisted of a trisaccharide repeating unit with possible presence of two ${\alpha}-(1{\rightarrow}3)$ and one ${\alpha}-(1{\rightarrow}6)$ glucosidic linkages. Microstructural analysis showed that the EPS appeared as ellipsoid or globose with a smooth surface. The EPS had a degradation temperature at $240^{\circ}C$. Furthermore, the EPS had strong DPPH and hydroxyl radical scavenging activities, and moderate superoxidant anion scavenging and metal ion-chelating activities. This is the first characterization of a glucan produced by B. amyloliquefaciens with strong antioxidant activity. The results of this study suggest the potential of the EPS from B. amyloliquefaciens GSBa-1 to serve as a natural antioxidant for application in functional products.

Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins

  • Liu, Juan;Xu, Yangrong;Yang, Jingjing;Wang, Wenzhi;Zhang, Jianqiang;Zhang, Renmei;Meng, Qingguo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.373-378
    • /
    • 2017
  • Ocotillol-type saponins are one kind of tetracyclic triterpenoids, sharing a tetrahydrofuran ring. Natural ocotillol-type saponins have been discovered in Panax quinquefolius L., Panax japonicus, Hana mina, and Vietnamese ginseng. In recent years, the semisynthesis of 20(S/R)-ocotillol-type saponins has been reported. The biological activities of ocotillol-type saponins include neuroprotective effect, antimyocardial ischemia, antiinflammatory, antibacterial, and antitumor activities. Owing to their chemical structure, pharmacological actions, and the stereoselective activity on antimyocardial ischemia, ocotillol-type saponins are subjected to extensive consideration. In this review, we sum up the discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins.

Development and validation of FRAT code for coated particle fuel failure analysis

  • Jian Li;Ding She;Lei Shi;Jun Sun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4049-4061
    • /
    • 2022
  • TRISO-coated particle fuel is widely used in high temperature gas cooled reactors and other advanced reactors. The performance of coated fuel particle is one of the fundamental bases of reactor safety. The failure probability of coated fuel particle should be evaluated and determined through suitable fuel performance models and methods during normal and accident condition. In order to better facilitate the design of coated particle fuel, a new TRISO fuel performance code named FRAT (Fission product Release Analysis Tool) was developed. FRAT is designed to calculate internal gas pressure, mechanical stress and failure probability of a coated fuel particle. In this paper, FRAT was introduced and benchmarked against IAEA CRP-6 benchmark cases for coated particle failure analysis. FRAT's results agree well with benchmark values, showing the correctness and satisfactory applicability. This work helps to provide a foundation for the credible application of FRAT.