Browse > Article
http://dx.doi.org/10.4014/jmb.1801.01012

Characterization and Antioxidant Activity of the Exopolysaccharide Produced by Bacillus amyloliquefaciens GSBa-1  

Zhao, Wen (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU))
Zhang, Jian (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU))
Jiang, Yun-Yun (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU))
Zhao, Xiao (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU))
Hao, Xiao-Na (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU))
Li, Liu (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU))
Yang, Zhen-Nai (Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU))
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.8, 2018 , pp. 1282-1292 More about this Journal
Abstract
The exopolysaccharide (EPS) produced by Bacillus amyloliquefaciens GSBa-1 was isolated and purified by ethanol precipitation, and DEAE-cellulose and Sepharose CL-6B chromatographies. The molecular mass of the purified EPS was determined to be 54 kDa. Monosaccharide analysis showed that the EPS was composed of predominantly glucose, and it was further confirmed by NMR spectroscopy to be ${\alpha}-glucan$ that consisted of a trisaccharide repeating unit with possible presence of two ${\alpha}-(1{\rightarrow}3)$ and one ${\alpha}-(1{\rightarrow}6)$ glucosidic linkages. Microstructural analysis showed that the EPS appeared as ellipsoid or globose with a smooth surface. The EPS had a degradation temperature at $240^{\circ}C$. Furthermore, the EPS had strong DPPH and hydroxyl radical scavenging activities, and moderate superoxidant anion scavenging and metal ion-chelating activities. This is the first characterization of a glucan produced by B. amyloliquefaciens with strong antioxidant activity. The results of this study suggest the potential of the EPS from B. amyloliquefaciens GSBa-1 to serve as a natural antioxidant for application in functional products.
Keywords
Bacillus amyloliquefaciens; exopolysaccharide (EPS); physicochemical properties; antioxidant activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Han Y, Liu E, Liu L, Zhang B, Wang Y, Gui M, et al. 2015. Rheological, emulsifying and thermostability properties of two exopolysaccharides produced by Bacillus amyloliquefaciens LPL061. Carbohydr. Polym. 115: 230-237.   DOI
2 Bounaix MS, Gabriel V, Robert H, Morel S, Remaud-Simeon M, Gabriel B, et al. 2010. Characterization of glucan-producing Leuconostoc strains isolated from sourdough. Int. J. Biol. Macromol. 144: 1-9.
3 Seymour FR, Knapp RD, Chen ECM, Jeanes A, Bishop SH. 1979. Structural analysis of dextrans containing 2-O-${\alpha}$-Dglucosylated ${\alpha}$-D-glucopyranosyl residues at the branch points, by use of $^{13}C$-nuclear magnetic resonance spectroscopy and gas-liquid chromatography-mass spectrometry. Carbohydr. Res. 71: 231-250.   DOI
4 Soeiro VC, Melo KRT, Alves MGCF, Medeiros MJC, Grilo MLPM, Almeidalima J, et al. 2016. Dextran: influence of molecular weight in antioxidant properties and immunomodulatory potential. Int. J. Biol. Macromol. 17:1340-1344
5 Zhao W, Teng JW, Zhang J, Zhao X, Jiang YY, Yang ZN. 2017. Production of exopolysaccharide by fermentation with Bacillus amyloliquefaciens GSBa-1, its rheological characterization and application. Chin. J. Food Sci. 16: 1-9.
6 Malick A, Khodaei N, Benkerroum N, Karboune S. 2017. Production of exopolysaccharides by selected Bacillus strains: optimization of media composition to maximize the yield and structural characterization. Int. J. Biol. Macromol. 102: 539-549.   DOI
7 Chen YT, Yuan Q, Shan LT, Lin MA, Chen DQ, Li CY. 2013. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncol Lett. 5: 1787-1792.   DOI
8 Yang H, Deng J, Yuan Y, Fan D, Zhang Y, Zhang R, et al. 2015. Two novel exopolysaccharides from Bacillus amyloliquefaciens C-1: antioxidation and effect on oxidative stress. Curr. Microbiol. 70: 298-306.   DOI
9 Wang J, Zhao X, Tian Z, Yang Y, Yang Z. 2015. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydr. Polym. 125: 16-25.   DOI
10 Zhang L, Li Y, Zhao X, Zhang X. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Food Microbiol. 54: 270-275.
11 Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X. 2010. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet kefir. Carbohydr. Polym. 82: 895-903.   DOI
12 Qiao D, Ke C, Hu B, Luo J, Ye H, Sun Y, et al. 2009. Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohydr. Polym.78: 199-204   DOI
13 Kodali VP, Dr RS. 2010. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol. J. 3: 245-251.
14 Maity P, Nandi AK, Manna DK, Pattanayak M, Sen IK, Bhanja SK, et al. 2017. Structural characterization and antioxidant activity of a glucan from Meripilus giganteus. Carbohydr. Polym. 157: 1237-1245.   DOI
15 Dertli E, Colquhoun IJ, Cote GL, Le GG, Narbad A. 2018. Structural analysis of the ${\alpha}$-D-glucan produced by the sourdough isolate Lactobacillus brevis E25. Food Chem. 242: 45-52.   DOI
16 Bounaix MS, Gabriel V, Morel S, Robert H, Rabier P, Remaud-Simeon M, et al. 2009. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J. Agric. Food Chem. 57: 10889-10897.   DOI
17 Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM. 2011. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 91: 2284-2291.
18 Saravanan C, Shetty PKH. 2016. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter. Int. J. Biol. Macromol. 90: 100-106.   DOI
19 Li DM, Zhou DY, Zhu BW, Miao L, Qin L, Dong XP, et al. 2013. Extraction, structural characterization and antioxidant activity of polyhydroxylated 1,4-naphthoquinone pigments from spines of sea urchin Glyptocidaris crenularis and Strongylocentrotus intermedius. Eur. Food Res. Technol. 237: 331-339.   DOI
20 Gao T, Ma S, Song J, Bi H, Tao Y. 2011. Antioxidant and immunological activities of water-soluble polysaccharides from Aconitum kusnezoffii Reichb. Int. J. Biol. Macromol. 49: 580-584.   DOI
21 Melo-Silveira RF, Fidelis GP, Viana RL, Soeiro VC, Silva RA, Machado D, et al. 2014. Antioxidant and antiproliferative activities of methanolic extract from a neglected agricultural product: corn cobs. Molecules 19: 5360-5367.   DOI
22 El-Newary SA, Ibrahim AY, Asker MS, Mahmoud MG, Awady ME. 2017. Production, characterization and biological activities of acidic exopolysaccharide from marine Bacillus amyloliquefaciens 3MS. Asian Pac. J. Trop. Med. 10: 652-662.   DOI
23 Zhao H, Li J, Zhang J, Wang X, Hao L, Jia L. 2017. Purification, in vitro antioxidant and in vivo anti-aging activities of exopolysaccharides by Agrocybe cylindracea. Int. J. Food Microbiol. 102: 351-357.
24 Tang W, Dong M, Wang W, Han S, Rui X, Chen X, et al. 2017. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydr. Polym. 173: 654-664.   DOI
25 Zhao H, Li J, Zhang J, Wang X, Hao L, Jia L. 2017. Purification, in vitro antioxidant and in vivo anti-aging activities of exopolysaccharides by Agrocybe cylindracea. Int. J. Food Microbiol. 102: 351-357.
26 Malick A, Khodaei N, Benkerroum N, Karboune S. 2017. Production of exopolysaccharides by selected Bacillus strains: optimization of media composition to maximize the yield and structural characterization. Int. J. Food Microbiol. 102: 539-549.
27 Zheng JQ, Wang JZ, Shi CW, Mao DB, He PX, Xu CP. 2014. Characterization and antioxidant activity for exopolysaccharide from submerged culture of Boletus aereus. Process Biochem. 49: 1047-1053.   DOI
28 Singh RP, Shukla MK, Mishra A, Kumari P, Reddy CRK, Jha B. 2011. Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydr. Polym. 84: 1019-1026.   DOI
29 Adesulu-Dahunsi AT, Sanni AI, Jeyaram K. 2018. Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT Food Sci. Technol. 87: 432-442.   DOI
30 Abdhul K, Ganesh M, Shanmughapriya S, Kanagavel M, Anbarasu K, Natarajaseenivasan K. 2014. Antioxidant activity of exopolysaccharide from probiotic strain Enterococcus faecium (BDU7) from Ngari. Int. J. Biol. Macromol. 70: 450-454.   DOI
31 You L, Gao Q, Feng M, Yang B, Ren J, Gu L, et al. 2013. Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities. Food Chem. 138: 2242-2249.   DOI
32 Huang Q L, S iu K C , Wang WQ, C heung YC , Wu J Y. 2 010. Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochem. 48: 380-386
33 Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X. 2010. In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 82: 1278-1283.   DOI
34 Cao S, Zhan H, Fu SY, Chen L. 2007. Regulation of superoxide anion radical during the oxygen delignification process. Chin. J. Chem. Eng. 15: 132-137.   DOI
35 Wang X, S hao C , Liu L, G uo X , Xu Y , Lu X . 2017. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 103: 1173-1184.   DOI
36 Tsiapali E, Whaley S, Kalbfleisch J, Ensley HE, Browder IW, Williams DL. 2001. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radic. Biol. Med. 30: 393-402   DOI
37 Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X. 2010. Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 79: 206-213.   DOI
38 Rani RP, Anandharaj M, Sabhapathy P, Ravindran AD. 2017. Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. Int. J. Food Microbiol. 96: 1-10.
39 Yu L, Xu X, Zhou J, Lv G, Chen J. 2017. Chain conformation and rheological behavior of exopolysaccharide from Bacillus mucilaginosus SM-01. Food Hydrocoll. 65: 165-174.   DOI
40 Maina NH, Tenkanen M, Maaheimo H, Juvonen R, Virkki L. 2008. NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohydr. Res. 343: 1446-1455.   DOI
41 Bowen WH, Burne RA, Wu H, Koo H. 2017. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 26: 229-242.
42 Magdalena PB, Adam C, Adam W, Sabina G, Andrzej G, Justyna C. 2015. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydr. Polym. 117: 501-509.   DOI
43 Liu L, Qin Y, Wang Y, Li H, Shang N, Li P. 2014. Complete genome sequence of Bifidobacterium animalis RH, a probiotic bacterium producing exopolysaccharides. J. Biotechnol. 189: 86-87.   DOI
44 Liu W, Wang H, Pang X, Yao W, Gao X. 2010. Characterization and antioxidant activity of two lowmolecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 46: 451-457.   DOI
45 Cao J, Zhang H-J, Xu C-P. 2014. Culture characterization of exopolysaccharides with antioxidant activity produced by Pycnoporus sanguineus in stirred-tank and airlift reactors. J. Taiwan Inst. Chem. 45: 2075-2080.   DOI
46 Hussain PR, Rather SA, Suradkar PP. 2018. Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa) ${\beta}$-glucan. Radiat. Phys. Chem. 144: 218-230.   DOI
47 Maity P, Sen IK, Maji PK, Paloi S, Devi KSP, Acharya K, et al. 2015. Structural, immunological, and antioxidant studies of ${\beta}$-glucan from edible mushroom Entoloma lividoalbum. Carbohydr. Polym 123: 350-358.   DOI
48 Je JY, Park PJ, Kim EK, Park JS, Yoon HD, Kim KR, et al. 2009. Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. LWT Food Sci. Technol. 42: 874-878.   DOI
49 Xu R, Shang N, Li P. 2011. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe 17: 226-231.   DOI
50 Schmid SV, Rehm B. 2015. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front. Microbiol. 6: 496-502.
51 Singh A, Singh S. 2004. Organic Chemistry of Natural Products. Campus Books International, New Delhi.
52 Nwodo UU, Okoh AI. 2012. Bacterial exopolysaccharides: functionality and prospects. Int. J. Food Microbiol. 13: 14002-14015.
53 Sasikumar K, Kozhummal VD, Devendra L, Nampoothiri KM. 2017. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour. Technol. 241: 1152-1156   DOI
54 Yang H, Deng J, Yuan Y, Fan D, Zhang Y, Zhang R, et al. 2015. Two novel exopolysaccharides from Bacillus amyloliquefaciens C-1: antioxidation and effect on oxidative stress. Curr. Microbiol. 70: 298-306.   DOI
55 Wang K, L i W, R ui X , C hen X, J iang M , Dong M . 2014. Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 67: 71-78.   DOI
56 Maina NH, Tenkanen M, Maaheimo H, Juvonen R, Virkki L. 2008. NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohydr. Res. 343: 1446-1455.   DOI
57 Matsuzaki C, Takagaki C, Tomabechi Y, Forsberg LS, Heiss C, Azadi P, et al. 2017. Structural characterization of the immunostimulatory exopolysaccharide produced by Leuconostoc mesenteroides strain NTM048. Carbohydr. Res. 448: 95-102.   DOI
58 Duh PD. 1999. Antioxidant activity of water extract of four Harng Jyur (Chrysanthemum morifolium Ramat) varieties in soybean oil emulsion. Food Chem. 66: 471-476.   DOI
59 Yuan YV, Bone DE, Carrington MF. 2005. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 91: 485-494.   DOI
60 Guo Y, Pan D, Li H, Sun Y, Zeng X, Yan B, 2013. Antioxidant and activity of immunomodulatory selenium exopolysaccharide produced by Lactococcus lactis subsp. lactis. Food Chem. 138: 84-89.   DOI
61 Prado MR, Boller C, Zibetti RGM, Souza D, Pedroso LL, Soccol CR. 2016. Anti-inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir. Microvasc. Res. 108: 29-33.   DOI
62 Du B, Yang Y, Bian Z, Xu B. 2017. Molecular weight and helix conformation determine intestinal anti-inflammatory effects of exopolysaccharide from Schizophyllum commune. Carbohydr. Polym. 172: 68-77.   DOI
63 Yan JK, Wang WQ, Li L, Wu JY. 2011. Physiochemical properties and antitumor activities of two ${\alpha}$-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohydr. Polym. 4: 753-758
64 Abid Y, Casillo A, Gharsallah H, Joulak I, Lanzetta R, Corsaro MM, et al. 2017. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. Int. J. Food Microbiol. 103: 669-675.