• Title/Summary/Keyword: Advanced cultivation technology

Search Result 99, Processing Time 0.023 seconds

Time Series Analysis of SPOT VEGETATION Instrument Data for Identifying Agricultural Pattern of Irrigated and Non-irrigated Rice cultivation in Suphanburi Province, Thailand

  • Kamthonkiat, Daroonwan;Kiyoshi, Honda;Hugh, Turral;Tripathi, Nitin K.;Wuwongse, Vilas
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.952-954
    • /
    • 2003
  • In this paper, we present the different characteristics of NDVI fluctuation pattern between irrigated and non-irrigated area in Suphanburi province, in Central Thailand. For non-irrigated rice cultivation area, there is a strong correlation between NDVI fluctuation and peak rainfall, while there is a lower correlation with irrigated area. In this study, the 'peak detector' classifier was developed to identify the area of non-irrigated and irrigated cropping and its cropping intensity (number of crops per year). This classifier was created based on cropping characteristics such as number of crops, time or planting period of each crop and its relationship with the peak of rainfall. The classified result showed good accuracy in identification irrigated and nonirrigated rice cultivation areas.

  • PDF

Quantitative Assay of Bioemulsifier by Turbidometric Method

  • Jeong, Yong-Leen;Park, Oh-Jin;Yoon, Byung-Dae;Yang, Ji-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.209-211
    • /
    • 1997
  • A quantitative method for assaying bioemulsifiers in culture broth was developed and applied to cultivation of Pseudomonas aeruginosa YPJ80. SED(Standard Emulsification Dilution), an indirect measure of bioemulsifier concentration, was proposed. Production of bioemulsifier and rhamnolipid reached their maximum simultaneously. However, the bioemulsifier/rhamnolipid ratio decreased with cultivation time. This indicates the presence of another bioemulsifier other than rhamnolipid. The bioemulsifier seems to be protein-like activator which showed emulsification activity in addition to rhamnolipid.

  • PDF

Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain Scenedesmus obliquus ABC-009

  • Koh, Hyun Gi;Jeong, Yong Tae;Lee, Bongsoo;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.378-386
    • /
    • 2022
  • Scenedesmus obliquus ABC-009 is a microalgal strain that accumulates large amounts of lutein, particularly when subjected to growth-limiting conditions. Here, the performance of this strain was evaluated for the simultaneous production of lutein and biofuels under three different modes of cultivation - photoautotrophic mode using BG-11 medium with air or 2% CO2 and heterotrophic mode using YM medium. While it was found that the highest fatty acid methyl ester (FAME) level and lutein content per biomass (%) were achieved in BG-11 medium with CO2 and air, respectively, heterotrophic cultivation resulted in much higher biomass productivity. While the cell concentrations of the cultures grown under BG-11 and CO2 were largely similar to those grown in YM medium, the disparity in the biomass yield was largely attributed to the larger cell volume in heterotrophically cultivated cells. Post-cultivation light treatment was found to further enhance the biomass productivity in all three cases and lutein content in heterotrophic conditions. Consequently, the maximum biomass (757.14 ± 20.20 mg/l/d), FAME (92.78 ± 0.08 mg/l/d), and lutein (1.006 ± 0.23 mg/l/d) productivities were obtained under heterotrophic cultivation. Next, large-scale lutein production using microalgae was demonstrated using a 1-ton open raceway pond cultivation system and a low-cost fertilizer (Eco-Sol). The overall biomass yields were similar in both media, while slightly higher lutein content was obtained using the fertilizer owing to the higher nitrogen content.

Evaluation of Operating Factors for the Continuous CO2 Fixation with a Photobioreactor (폐탄산가스 고정화를 위한 연속식 광반응기의 운전 인자 평가)

  • Shin, Hang-Sik;Chae, So-Ryong;Jang, Min-Young;Park, Bong-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.71-76
    • /
    • 2000
  • The biological carbon dioxide fixation using microalgae has been known as an effective carbon dioxide reduction technology. With many environmental factors influencing microalgal productivity, the desirable cultivation factors were investigated using a green alga, Euglena gracilis. It has the high protein and vitamin E to be used as fodder. In batch culture with a photobioreactor, initial pH, temperature, carbon dioxide concentration and light intensity in the optimum cultivation condition were 3.5, $27^{\circ}C$,5-10% and $520{\mu}mol/m^2/s$, respectively. After that, the optimum hydraulic retention time (HRT for the continuous cultivation was 4 days at carbon dioxide concentration of 10%. In this condition, the final dry cell weight was 1.2g/l.

  • PDF

Effect of Plant Growth and Environmental Enhancement of Soils through Nanoparticle Application

  • Kim, Donggiun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.182-187
    • /
    • 2020
  • Silver nanoparticles (AgNPs) have been manufactured in recent years and widely used in various fields. Reactive oxygen species (ROS), which occur in AgNPs, destroy cell membranes. It is widely accepted that ROS generated in this manner inhibit microorganisms growth and causes toxic effects, However, it does not affect cell membranes directly but positively affects growth in plants with cell walls. The nanoball used in this experiment is a new material that generates ROS stably and is used in aqueous solution. Results of this study indicate a 30% increase in yield of Ginseng mixed with culture soil. The analysis of soil condition after cultivation showed that the possibility of repetitive cultivation in soil mixed with Nanoball was high. This suggests that Nanoball is an antimicrobial active material due to the microbial / extermination effect of pathogenic microorganisms. Therefore, there may be potential applications in agricultural cultivation sites as a repetitive cultivation technology that reuses soil.

Effect of Inoculum Size on Biomass Accumulation and Ginsenoside Production by Large-Scale Cell Suspension Cultures of Panax ginseng

  • Thanh Nguyen Trung;Murthy Hosakatte Niranjana;Yu Kee-Won;Jeong Cheol Seung;Hahn Eun-Joo;Paek Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.265-268
    • /
    • 2004
  • Cell growth and ginseng saponin production by large-scale suspension (bioreactor) cultures of Panax ginseng were investigated under various inoculum sizes. Cell growth was low at an inoculum size of 40 g FW/L, and the maximum cell growth was obtained with increasing inoculum size up to 100 g FW/L. The cell density of 333 g FW/L and 12.7 g DW/L was obtained at inoculum size of 100 g FW/L after 30 days of cultivation. Maximum saponin production of $4.40\;\cal{mg/g}$ DW was achieved at 60 g FW/L of inoculum size. Thus, inoculum size 60 g FW/L was suitable for optimum biomass accumulation as well as saponin production during bioreactor cultivation of ginseng suspension cells.

TIME SERIES ANALYSIS OF SPOT NDVI FOR IDENTIFYING IRRIGATION ACTIVITIES AT RICE CULTIVATION AREA IN SUPHANBURI PROVINCE, THAILAND

  • Kamthonkiae Daroonwan;Kiyoshe Honda;Hugh Turral
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.3-6
    • /
    • 2005
  • In this paper, the real scenario of water situation (e.g. water management, water availability and flooding) in an irrigated rice cultivation area in Suphanburi Province, Central-West Thailand is discussed together with the NDVI time series data. The result shown is derived by our classifier named 'Peak Detector Algorithm (PDA)'. The method discriminated 5 classes in terms of irrigation activities and cropping intensities, namely, Non-irrigated, Poorly irrigated - 1 crop/year, Irrigated - 2 crops/year, Irrigated - 3 crops/year and Others (no cultivation happens in a year or other land covers). The overall accuracy of all classified results (1999-2001) is around $77\%$ against independent ground truth data (general activities or function of an area). In the classified results, spatial and temporal inconsistency appeared significantly in the Western and Southern areas of Suphanburi. The inconsistency resulted mainly by anomaly of rainfall pattern in 1999 and their temporal irrigation activity. The algorithm however, was proved that it could detect actual change of irrigation status in a year.

  • PDF

Production of Single Cell Protein using the wasted CO2 gas in Semi-continuous and Continuous Process (폐탄산가스 고정화를 위한 반연속식 및 연속식 공정에서의 Single Cell Protein 생산)

  • Shin, Hang-Sik;Jang, Min-Young;Chae, So-Ryong;Park, Bong-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.73-78
    • /
    • 2001
  • The biological carbon dioxide fixation using microalgae and photo-bioreactor has been known as an effective carbon dioxide reduction technology. As algae has many other environmental factor for its growth, the desirable cultivation factors were investigated using a green alga, Euglena gracilis Z. In this study, Euglena gracilis Z showed good $CO_2$ fixation ability in high $CO_2$ concentration of 10-20% and it contained the high protein and vitamin E enough to be used as fodder. For the mass cultivation, the continuous and semi-continuous cultivation methods were employed. The optimum hydraulic retention time (HRT) for the continuous cultivation was 4 days at carbon dioxide concentration of 10%. In this condition, the final cell number was $3.57{\times}10^6/m{\ell}$. The growth of Euglena gracilis Z increased according to the light intensity.

  • PDF

Controlling the surface energy and electrical properties of carbon films deposited using unbalanced facing target magnetron sputtering plasmas

  • Javid, Amjed;Kumar, Manish;Yoon, Seok Young;Lee, Jung Heon;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.231.1-231.1
    • /
    • 2015
  • Surface energy, being an important material parameter to control its interactions with the other surfaces plays a key role in bio-related application. Carbon films are found very promising due to their characteristics such as wear and corrosion resistant, high hardness, inert, low resistivity and biocompatibility. The present work deals with the deposition of carbon films using unbalanced facing target magnetron sputtering technique. The discharge characteristics were studied using optical emission spectroscopy and correlated with the film properties. Surface energy was investigated through contact angle measurement. The ID/IG ratio as calculated from Raman spectroscopy data increases with the increase in power density due to the higher number of sp2 clusters embedded in the amorphous matrix. The deposited films were smooth and homogeneous as observed by Atomic force microscopy having RMS roughness in the range of 1.74 to 2.25 nm. It is observed that electrical resistivity and surface energy varies in direct proportionality with operating pressure and has inverse relation with power density. The surface energy results clearly exhibited that these films can have promising applications in cell cultivation.

  • PDF