• Title/Summary/Keyword: Advanced Water treatment processes

검색결과 137건 처리시간 0.022초

펜톤산화와 오존산화 조합에 따른 염색폐수의 유기물질 및 색도 처리효율 비교 평가에 관한 연구 (Eveluation of Comparable Removal Efficiency of Organics and Color for the Dyeing Wastewater by Fenton Oxidation and Ozonation)

  • 김선희;이상호
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.778-784
    • /
    • 2004
  • Dyeing wastewater contains recalcitrant organics which can not be easily treated by conventional biological treatment. Therefore it has to be treated by other advanced oxidation process in order to remove COD and Color more efficiently. Fenton oxidation process is one of the most commonly applied processes in removal of COD and color for the dyeing wastewater. However it increase the treatment cost and the production of sludge by the use of the excessive chemical reagent. Ozonation is not suitable in Single treatment process because it is not effective in organics removal compared with Color removal. The purpose of this research in order to evaluate the comparable removal efficiency of COD and color by the combination of advanced oxidation processes for the dyeing wastewater. The sequential treatment processes of Fenton process and ozonation was more effective to remove organics and color than ozonation and Fenton process. The result of Fenton process for the pretreatment presented as the 81% removal of organics whereas ozonation process for the pretreatent presented as the 22.1% removal of organics. The removal of colour was higher as 81.3% for the ozonation as the pretreatment than 77.7% for the Fenton process as the pretreatment.

기존수처리 공정 및 고도정수처리 공정에서 NOM의 분자크기 분포 변화 (Molecular Size Distributions of NOM in Conventional and Advanced Water Treatment Processes)

  • 최일환;정유진
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.682-689
    • /
    • 2008
  • The purpose of this study was to find out the variation between molecular size distribution (MSD) of natural organic matter (NOM) in raw waters after different water treatment processes like conventional process (coagulation, flocculation, filtration) followed by advanced oxidation process (ozonation, GAC adsorption). The MSD of NOM of Suji pilot plant were determined by Liquid Chromatography-Organic Carbon Detection (LC-OCD) which is a kine of high-performance size-exclusion chromatography (HPSEC) with nondispersive infrared (NDIR) detector and $UV_{254}$ detector. Five distinct fractions were generally separated from water samples with the Toyopearl HW-50S column, using 28 mmol phosphate buffer at pH 6.58 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface water. High molecular weight (HMW) matter was clearly easier to remove in coagulation and clarification than low molecular weight (LMW) matter. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. No more distinct variation of MSD was observed by ozone process after sand filtration but the SUVA value were obviously reduced during increase of the ozone doses. UVD results and HS-Diagram demonstrate that ozone induce not the variation of molecular size of humic substance but change the bond structure from aromatic rings or double bonds to single bond. Granular activated carbon (GAC) filtration removed 8~9% of organic compounds and showed better adsorption property for small MSD than large one.

대체수자원 확보를 위한 하수 재이용 기술 동향과 발전방향 (Trends and Directions in the Development of Wastewater Reclamation and Reuse Technology for Alternative Water Resources)

  • 조일형;이시진;김지태
    • 한국물환경학회지
    • /
    • 제29권1호
    • /
    • pp.127-137
    • /
    • 2013
  • Reuse of wastewater will intensify in the coming decades due to water shortage, the change of climatic conditions, the need for industrial and agricultural use and the necessity of improving health and environmental conditions for the growing population. This paper considers (a) the status and trends of wastewater reuse and reclamation in the world, (b) case studies of wastewater reuse projects, (c) analysis of technology level, (d) forecast of global market, and (e) the future views and directions in development of wastewater reuse technologies. Based on the available documented literature, this paper provides a review assessment of the current status of the wastewater treatment processes including potential applications for reuse. Key challenges for both wastewater treatment and reuse are also discussed in the paper and include recommendations, e.g. cost, effluent water quality, energy use and technical solutions, for future developments.

산업폐수 재이용을 위한 고급산화공정 시스템 연구 (A Study of Advanced Oxidation Process for Reuse of Industrial Wastewater)

  • 김성준;김명희;원찬희;황정석;이길용
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.580-584
    • /
    • 2010
  • As water becomes more scarce around the world the reuse of treated wastewater is being recenlty considered as indispensible trend we need to follow. Especially, industrial area consuming large amount of water has been encouraged to reuse the treated wastewater to secure sufficient water for the production of merchandise. In this study, a study of advanced oxidation process for treatment of industrial wastewater. The treatment performance of UV and ozoznation and five types advanced oxidation processes such as UV/AC, UV/Catalyst, $O_3$/Catalyst, UV/$O_3$/Catalyst was experimentally investigated for reuse of industrial wastewater. The removal efficiency of $COD_{Cr}$, color were relatively evaluated in each treatment unit simulated outflow water of wastewater treatment area. UV/$O_3$/Catalyst process showed the highest $COD_{Cr}$ remaval and color remaval among proposed oxidation process.

파일럿 플랜트 규모에서 일체형 침전부상공정 (SeDAF)의 설계인자 및 운전특성에 대한 실증적 평가 (Empirical evaluation for design parameters and operating characteristics of the integrated sedimentation and dissolved air flotation (SeDAF) process at the pilot-scale plant)

  • 장여주;정진홍;임현만;김원재
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.1-14
    • /
    • 2021
  • Eutrophication and algal blooms can lead to increase of taste and odor compounds and health problems by cyanobacterial toxins. To cope with these eco-social issues, Ministry of Environment in Korea has been reinforcing the effluent standards of wastewater treatment facilities. As a result, various advanced phosphorus removal processes have been adopted in each wastewater treatment plant nation-widely. However, a lot of existing advanced wastewater treatment processes have been facing the problems of expensive cost in operation and excessive sludge production caused by high dosage of coagulant. In this study, the sedimentation and dissolved air flotation (SeDAF) process integrated with sedimentation and flotation has been developed for enhanced phosphorus removal in wastewater treatment facilities. Design and operating parameters of the SeDAF process with the capacity of 100 ㎥/d were determined, and a demonstration plant has been installed and operated at I wastewater treatment facility (located in Gyeonggi-do) for the verification of field applicability. Several empirical evaluations for the SeDAF process were performed at demonstration-plant scale, and the results showed clearly that T-P and turbidity values of treated water were to satisfy the highest effluent standards below 0.2 mg/L and 2.0 NTU stably for all of operation cases.

미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점 (Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications)

  • 최상기;이웅배;김영모;홍석원;손희종;이윤호
    • 상하수도학회지
    • /
    • 제36권2호
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

활성슬러지공정과 고도처리공정에 따른 하수처리수의 처리효율과 유기물 특성 (Treatment Efficiency and Organic Matter Characterization of Wastewater through Activated Sludge Process and Advanced Wastewater Treatment Process)

  • 홍지혜;손진식
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.807-813
    • /
    • 2004
  • Wastewater was treated by two different treatment processes; activated sludge process and advanced wastewater treatment process (KNR process) using lab-scale experiment. Two treated wastewater showed good treatment efficiency of organic matter removal, up to 90% removal. Nitrogen and phosphorus were not effectively removed though activated sludge process, while KNR process showed good removal efficiency of nitrogen and phosphorus; 56% nitrogen removal and 95% phosphorus removal. KNR process showed better removal efficiency of organic matter, nitrogen, and phosphorus compared to activated sludge process. Organic matter characterization was tracked though measurement of UV scan, SUVA, and XAD fractionation. Treated wastewater showed higher SUVA value than wastewater influent, indicting less aromatic characteristic of organic matter. XAD fractionation showed hydrophilic fraction decreased though wastewater treatment, suggesting microbes preferentially digest hydrophilic and aliphatic molecules rather than hydrophobic and aromatic molecules of organic matter.

고도정수공정에서 오염물질 제거효율 변화특성과 BAC조의 역세척에 따른 영향 (Variation of Pollutant Removal Efficiency and Backwashing Effect of BAC Basin in Advanced Water Treatment Processes)

  • 박수이;이상봉;신상민;전창재;김창원
    • 대한환경공학회지
    • /
    • 제30권1호
    • /
    • pp.45-53
    • /
    • 2008
  • 본 연구에서는 국내 한 정수장의 고도정수처리공정의 실험분석 자료를 바탕으로 정수장으로 유입되는 원수의 수질특성과 처리공정별 오염물질 제거효율의 변화특성을 연구하였고, 활성탄여과조의 역세척에 따른 BAC 내의 미생물 거동을 추적하였다. KMnO$_4$ 소비량 등 8$\sim$9개의 주요 항목을 중심으로 제거특성이 연구되었고, 활성탄여과조의 유입 유출수에 대하여 NH$_3$-N 등 4항목의 농도변화를 추적하였다. 역세척 전 후의 활성탄 시료의 SEM 사진을 촬영하였고, 미생물 생체량(HPC) 조사를 통해 활성탄 부착미생물의 존재를 확인하고자 하였다. 유입원수의 특성은 대부분의 조사항목이 일정한 농도범위로 유입되었고 그 중 계절적 일관성을 갖는 항목이 있었다. 공정별 제거효율 변화특성은 월별 일정한 유형을 갖는 것, 공정진행에 따라 지속적으로 제거되는 것, 오존접촉조에서 제거효율이 떨어지는 것 등으로 분류되었고, 현재 운전되고 있는 고도처리공정에서 제거되는 주요 대상오염물질을 구별할 수 있었다. NH$_3$-N의 농도변화 곡선으로 활성탄여과조 내에 미생물이 존재함을 예측하여 SEM 사진과 HPC 측정으로 이를 확인하였다.

고도정수처리 신(新) 공정(PMR)개발 및 처리효율 평가 (Development of a New Advanced Water Treatment Process (PMR) and Assessment of Its Treatment Efficiency)

  • 안효원;노수홍;권오성;박용효;왕창근
    • 멤브레인
    • /
    • 제18권2호
    • /
    • pp.157-167
    • /
    • 2008
  • 수돗물 공급에 있어서의 미량 유기물질 및 맛냄새 제거의 중요도가 높아짐에 따라 오존, GAC 및 PAC 등 고도 정수처리공정의 도입이 지속적으로 증대되고 있다. 하지만, 원수의 수질악화, 새로운 오염물질의 출현 등에 의해 기존의 고도처리공정이 향후에도 충분한 대안이 된다고 확신하기는 어려운 실정이다. 본 연구에서는 고농도의 분말활성탄을 slurry blanket의 형태로 체류시킨다는 새로운 개념의 접촉조를 구상, 막여과조와 연계하여 하나의 공정으로 완성하였다. 한강원수를 대상으로 $80m^3/일$ 규모의 pilot plant를 이용, 유기물질 및 2-MIB, Geosmin에 대한 제거특성을 살펴본 결과 DOC의 경우 운영초기 90% 이상, 안정화된 이후에도 $70{\sim}80%$ 내외의 높은 처리효율을 나타내었으며 2-MIB Geosmin의 경우 검출한계 이하로 제거되었다. 본 공정은 1년 이상의 장기간의 고도처리 효율 검증 및 안정된 PAC 접촉조의 운영방안 등 공정 최적화를 위한 추가적인 연구가 필요한 실정이나 기존의 고도처리에 비해 컴팩트하면서 높은 처리효율을 안정적으로 나타냄으로써 맛냄새물질을 비롯한 미량 오염물질을 제거하기 위한 대안공정으로서의 높은 가능성을 확인하였다.

Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

  • Shoucheng, Wen
    • 대한화학회지
    • /
    • 제58권1호
    • /
    • pp.76-79
    • /
    • 2014
  • Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is $440^{\circ}C$, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.