• 제목/요약/키워드: Advanced Water Treatment Process

검색결과 342건 처리시간 0.026초

소규모 오수발생지역의 고도처리시설을 위한 상.하 흐름형 인공습지 개발 (Development of Up- and Down-flow Constructed Wetland for Advanced Wastewater Treatment in Rural Communities)

  • 김형중;윤춘경;권태영;정광욱
    • 한국농공학회논문집
    • /
    • 제48권6호
    • /
    • pp.113-124
    • /
    • 2006
  • The feasibility of the up- and down-flow constructed wetland was examined fur rural wastewater treatment in Korea. Many constructed wetland process was suffered from substrate clogging and high plant stresses because of long term operation. The up- and down-flow constructed wetland process used porous granule materials (charcoal pumice : SSR=10:20:70) for promoting intake rate of nutrient to plant, and especially flow type was designed continuously repeating from up-flow to down-flow. $BOD_5$ and SS was removed effectively by the process with the average removal rate being about 75% respectively. The wetland process was effective in treating nutrient as well as organic pollutant. Removal of TN and TP were more effective than other wetland system and mean effluent concentrations were approximately 7.5 and $0.4mg\;L^{-1}$ which satisfied the water quality standard for WWTPs. The treatment system did not experience any clogging or accumulations of pollutants and reduction of treatment efficiency during winter period because constructed polycarbonate glass structure prevented temperature drop. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the up- and down-flow constructed wetland was thought to be an effective and feasible alternative in rural area.

시공간 동시분할 공정 시뮬레이션을 통한 질소 및 인 제거 최적화 방안 (Optimization of Nitrogen and Phosphorus Removal of Temporal and Spatial Isolation Process by Model Simulation System)

  • 유동진;장덕;신형수;박상민;홍기호;김수영;김명준
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.206-215
    • /
    • 2007
  • The objective of this study was to establish the optimal system operating strategies for nitrogen and phosphorus removal through model simulation system built for advanced wastewater treatment targeting on simultaneous temporal/special phase isolation BNR process. The simulation system was built with unit process modules using object modules in GPS-X code. The system was well verified by field experiment data. Simulation study was carried out to investigate performance response to design and operation parameters, i.e. hydraulic retention time (HRT), solids retention time (SRT), and cycle time. The process operated at HRTs of 10~15 hours, longer SRTs, and cycle time of 2 hours showed optimal removal of nitrogen. The HRTs of 10~15 hours, SRTs of 20~25 days, and longer cycle time was optimal for phosphorus removal. Both simulation and field studies showed that optimal operating strategies satisfying both the best nitrogen and phosphorus removals include HRTs ranged 10~15 hours, SRTs ranged 20~25 days, and cycle times of 4~8 hours. The simulation system with modularization of generalized components in BNR processes was, therefore, believed to be a powerful tool for establishing optimal strategies of advanced wastewater treatment.

단상(單相) 및 2상(相) 혐기성(嫌氣性) 소화(消化)에 의한 주정폐수(酒精廢水) 처리(處理)에 관한 연구(硏究) (A Study on the Treatment of Distillery Wastewater by Single-phase and Two-phase Anaerobic Digestion)

  • 정연규;나승우;박준환
    • 상하수도학회지
    • /
    • 제7권1호
    • /
    • pp.5-12
    • /
    • 1993
  • The objectives of this paper are to present data to illustrate how an advanced digestion process, two-phase digestion, can provide superior performance in terms of waste stabilization efficiency and net energy recovery. As the result, it is possible to separate enrichment cultures of acidogenic and methanogenic organisms in isolated environments by kinetic control involving manipulation of dilution rates. In single-phase digestion process, HRT and COD loading for effective operation were 14.29 days and 2.33kg $COD/m^3$ day, but two-phase digestion may be conducted efficiently at 7 days of HRT and 5.71kg $COD/m^3$ day of loading. Data from this studies showed that the two-phase process is better than single-phase digestion under all test conditions when compared on the bases of gas yield and production rate, reductions of COD and VS, buffer capacity, and unconverted volatile acids in the effluent.

  • PDF

MEPC. 227(64) 수질기준에 의한 SBR 및 MBR 복합공정 적용 가능성 평가 (Applicability of SBR and MBR Combined Process Meets the Water Quality Standards of MEPC. 227(64))

  • 정진희;이승철;이슬기;한영립;윤영내;최영익
    • 한국환경과학회지
    • /
    • 제24권12호
    • /
    • pp.1609-1616
    • /
    • 2015
  • The objective of this study was to make a SBR+MBR complex process to evaluate the possible use of the advanced water treatment system for ships (SBR+MBR complex process) in accordance with the amendments MAPOL 73/78 that went into effect. The conditions 1 and 2 did not show the quick reduction in anaerobic condition while in the precipitation and stirring stages of the SBR treatment which was determined to be ineffective denitrification, same as with the ORP. Removal of organic matters such as $BOD_5$ and $COD_{Cr}$ in the SBR treatment was observed to happen smoothly and going through the MBR treatment as well would provide a stable water quality. However, the results were not satisfactory in accordance with $BOD_5$ 25 mg/L and $COD_{Cr}$ 125 mg/L. Thus, the operating conditions improvement is deemed necessary. Likewise for the nutrients (T-N and T-P), the nitrification in bioreactor, denitrification and phosphorus absorption in aerobic tank due to phosphorus release in anaerobic tank had not been proceeded effectively. It was concluded that the improved operating conditions and structural changes would provide more effective treatments since the removal rates of T-N and T-P were less than 70% and 80%, respectively, which were standards specified by the MEPC. 227(64).

생물활성탄을 이용한 절삭유로 오염된 지하수의 처리특성과 미생물군집구조 해석 (Treatment Performance and Microbial Community Structure in BAC-process Treating Contaminated Groundwater by Water-soluble Cutting Oil)

  • 임병란;배시애;임호주;조창호
    • 한국환경보건학회지
    • /
    • 제32권1호
    • /
    • pp.71-76
    • /
    • 2006
  • Treatment performance and microbial community structure were investigated in water-soluble cutting oil treatment process using biological activated carbon. DOC removal in BACI column at $15^{\circ}C$ was higher than at $25^{\circ}C$, but those of BAC3 column after 60days was high at$25^{\circ}C$. Also, quinone content of first-step reactors at $25^{\circ}C$ and $15^{\circ}C$ was much the same, but those of the third-step reactor at $25^{\circ}C$ was higher than at $15^{\circ}C$. The dominant type of two apparatus was ubquinone (UQ)-l 0 followed by UQ-8. Menaquinones were detected from $25^{\circ}C$ apparatus and effluent. This suggested that DOC removal at $25^{\circ}C$ was advanced degradation by attached microorganisms on the activated carbon surface. The DOC removal in long-term activated carbon apparatus increased with going in BAC3 column. This indicated the influent of POC was a result of DOC removal efficiency decrease. Integrated DOC removal from start point in experiment to break point and quinone content were showed a tendency of increasing with going last-step activated carbon apparatus. Therefore, the biological activated carbon apparatus used by this study was effective treatment process in contaminated groundwater by water-soluble cutting oil.

인공신경망 모형을 이용한 급속혼화공정에서 적정 응집제 주입농도 결정 및 응집처리후 탁도의 예측 (Prediction of Turbidity in Treated Water and the Estimation of the Optimum Feed Concentration of Coagulants in Rapid Mixing Process using an Artificial Neural Network Model)

  • 정동환;박규홍
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.21-28
    • /
    • 2005
  • The training and prediction modeling using an artificial neural network was implemented to predict the turbidity of treated water as well as to estimate the optimized feed concentration of polyaluminium chloride (PACl) in a water treatment plant. The parameters used in the input layers were pH, temperature, turbidity and alkalinity, while those in output layers were PACl and turbidity of treated water. Levenberg-Marquadt method of feedforward back-propagation perceptron in the neural network toolbox of MATLAB program was used in this study. Correlation coefficients of the training data with the measured data were 0.9997 for PACl and 0.6850 for turbidity and those of the testing data with measured data were 0.9140 for PACl and 0.3828 for turbidity, when four parameters at input layer, 12-12 nodes each at both the first and the second hidden layers, and two parameters(PACl and turbidity) at output layer were used. Although the predictability of PACl was improved, compared to that of the previous studies to use the only coagulant dose as output layer, turbidity in treated water could not be predicted well. Acquisition of more data through several years obtained with the advanced on-line measuring system could make the artificial neural network useful and practical in actual water treatment plants.

섬모상담체를 이용한 고도처리공정의 운전인자 도출 (Proposed Operating Parameters for Advanced Treatment Process using a Cilium Media BNR Process)

  • 안윤희;박찬규;고광백;이강수
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.761-765
    • /
    • 2007
  • The study were conducted in order to investigate the effect of operating parameters including the internal recycle (nitrification return) rates, hydraulic retention times (HRTs) and temperature when using a cilium media method. The first experiment was for evaluating the effect of HRT (12 hr, 10 hr, 8 hr, 6 hr, 4 hr). The second experiment was for analyzing effect of internal recycle rate (100%, 200%, 300%, 400%). As a result of the first experiment, BOD was removed to 97~98% for 6~8 hr HRT. Effluent water quality was not significantly influenced with HRT within that range. However the nitrogen removal was sensitive to HRT. T-P removal efficiency was invariable at various HRTs. The average BOD removal efficiency was about 97% in spite of change of internal recycle rate while T-N removal efficiency was increased at the internal recycle rate of 100~200%, but invariable at the internal recycle rate of 200~300%.

하수처리장 방류수에 존재하는 항생제 내성인자가 하천에 미치는 영향 (Effect of antibiotic resistant factors in effluent of wastewater treatment plant on stream)

  • 장예진;유용재;설우준;차창준;이옥재;채종찬
    • 미생물학회지
    • /
    • 제53권4호
    • /
    • pp.316-319
    • /
    • 2017
  • 하수처리장 방류수와 하천 중의 항생제 내성인자 분포에 대한 상관성을 분석하기 위해 방류수와 상류 하천수, 하류 하천수를 대상으로 항생제 내성유전자와 전파 관련 유전자를 조사하였다. 3개 지점에서 134~183개의 항생제 내성유전자(ARG) 및 전파 관련 유전자(MGE)가 검출되었으며, 1개의 16S rRNA 유전자에 대한 ARG 및 MGE 유전자의 상대적인 총 합이 0.063~0.422 copy로 분석되었다. ARG와 MGE의 수와 존재량은 방류수에서 가장 높게 검출된 반면, 총 세균 수는 가장 적게 검출됨으로서 하수처리 과정에서 사멸된 세균에 포함된 유전자들이 검출된 것으로 판단된다. 또한 MGE의 존재량 양상이 ARG의 존재량과 상관관계를 보임으로서 항생제 내성균들의 내성기작이 자연내성보다는 획득내성일 가능성을 제시하였다.

총인 수질기준강화를 위한 국내 하수종말처리장의 물리화학적처리 특성조사 및 경제성 분석 (Survey of Physicochemical Methods and Economic Analysis of Domestic Wastewater Treatment Plant for Advanced Treatment of Phosphorus Removal)

  • 박혜영;박상민;이기철;권오상;유순주;김신조
    • 대한환경공학회지
    • /
    • 제33권3호
    • /
    • pp.212-221
    • /
    • 2011
  • 우리나라의 공공하수처리시설은 생물학적 인 제거공정을 운전하고 있으나, '12년부터 지역구분(I, II, III)에 따라 각각 0.2, 0.3 및 0.5 mg/L로 강화되는 방류수수질기준을 준수하기 위해서는 화학물질을 이용한 추가적인 인 처리시설을 적용할 필요성이 대두되었다. 강화된 총인의 수질기준을 만족하기 위해 적용된 물리화학적 처리기술 성능의 구체적인 운영자료 구축을 위하여, 화학적 응집제 사용 중인 인 처리시설 중 모범적으로 가동하고 있는 국내 시설의 운영 데이터를 분석하여 처리성능을 평가하였다. 또한, jar 테스트를 이용해 물리화학적 인 제거공정 적용 시 최적 응집제 주입율 도출, 인 제거 및 슬러지 발생특성을 관찰하고 약품비용과 슬러지 발생증가량을 산정하여 실처리장에 응집제 적용 시 예상되는 경제성 분석을 하였다. 활성슬러지를 이용한 jar 테스트 결과, 0.5와 0.2 mg/L 이하의 총인 농도를 달성하기 위해 필요한 최소한의 응집제(황산알루미늄, 폴리염화알루미늄)의 주입농도는 각각 25와 30 mg/L (as $Al_2O_3$)이며, 2차 처리수의 경우에는 동일한 총인 농도를 달성하기 위해 요구되는 응집제 주입농도가 활성슬러지에 비해 약 1/12~1/3 수준으로 감소하였다. jar 테스트 결과, 활성슬러지에 응집제를 주입할 경우에 고형물 농도가 약 10~11%가 증가할 것으로 예측되었다. 한편, 활성슬러지에 응집제를 주입하는 경우의 응집제(황산알루미늄) 구입비는 2차 처리수에 주입하는 경우에 비해 약 4~10배 정도가 증가할 것으로 산정되었다. 또한, 슬러지 발생량은 약 4~10배 정도 증가할 것으로 예측되었다.

BNR에 의한 하수의 고도처리에 미치는 NH3 스트리핑 전처리의 영향 (Effect of Pre-NH3 Stripping on the Advanced Sewerage Treatment by BNR)

  • 서정범;안광호
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.846-850
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to increase influent C/N ratio by ammonia stripping without required carbon source and for improving treatment efficiencies of sewerage by the combination process of ammonia stripping and BNR (StripBNR). The results of this study were summarized as follows. BOD removal efficiencies of BNR and StripBNR were 95.3% and 93.2%, respectively. T-N and T-P removal efficiencies of BNR were 53.3% and 40.8%, respectively. T-N and T-P removal efficiencies of StripBNR were 72.8% and 62.9%, respectively. Concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at BNR effluent were 0.03 mg/L, 0.08 mg/L and 9.12 mg/L, respectively. On the other hands, concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at StripBNR effluent were 5.79 mg/L, 0.01 mg/L and 0.14 mg/L, respectively. Consequently, influent C/N ratio of BNR process was increased by ammonia stripping. Removal efficiency of T-N and T-P was improved about 20% by the process of StripBNR.