• Title/Summary/Keyword: Advanced Water Purification

Search Result 78, Processing Time 0.025 seconds

A Study on the Filed application of Environmental Friendly Porous Concrete For Planting (환경친화 식생용 포러스콘크리트의 현장적용성에 관한 연구 II)

  • Kim, Jeong-Hwan;Lee, Nam-Ik;Lee, Young-Hee;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.829-832
    • /
    • 2006
  • The river environments of many streams in korea have been deteriorate through the rapid industrialization and urbanization since the 1960s. In korea, on the other hand, much efforts on the research and project have been made for the restoration of the deteriorated streams to close-to-nature. in order to restore the deteriorated streams, therefore, it is necessary to investigate such advanced technologies and materials. In view of this requirement, various research paths are being taken focusing on coarse aggregates to make multi-functional porous concrete having continuous voids so as to improve water and air permeability, acoustic absorption, water purification, and applicability to vegetation. The Purpose of this study is to investigate the method for recovery of the environment in the streams area using porous concrete painting block. the P.O.C block applies for test in the kyungan-cheon have been monitored planting during six month. after 6 months, plant grows flourishing and reconstructed in state such as nature rivers.

  • PDF

Synthesis of highly crystalline nanoporous titanium dioxide at room temperature (상온에서 고결정성 나노기공 이산화티탄 제조기술)

  • Chung, Pyung Jin;Kwon, Yong Seok
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.65-78
    • /
    • 2016
  • Initial studies of the photocatalyst has been developed from the field relating to the conversion and storage of solar energy. Recently, the study of the various organic decomposition compound and the water purification and waste water treatment by ultraviolet irradiation in the presence of light or a photocatalyst are being actively investigated. In addition, the oxidized material-carbon nanotubes, graphene-nanocomposites have been studied. Such a complex is suitable as a material constituting the solar cells and photolysis nanoelectronics, including the flexible element due to thermal and chemical stability.

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

A comparative study on the degradation of methyl orange, methylene blue and congo red by atmospheric pressure jet

  • Park, Ji Hoon;Yusupov, Maksudbek;Lingamdinne, Lakshmi Prasanna;Koduru, Janardhan Reddy;Bogaerts, Annemie;Choi, Eun Ha;Attri, Pankaj
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.190.1-190.1
    • /
    • 2016
  • One of the most serious problems faced by billions of people today is the availability of fresh water. According to statistics, 15% of the world's total output of dye products is discharged into the environment as dye wastewater, which seriously pollutes groundwater resources. For the treatment of chemically and biologically contaminated water the advanced oxidation processes (AOPs) shows the promising action. The main advantage with AOPs is the ability to degrade the organic pollutants to $CO_2$ and $H_2O$. For this degradation process the AOPs generation of powerful and non-selective radicals that may oxidize majority of the organic pollutants present in the water body. To generate the various reactive chemical species such as radicals (${\bullet}OH$, ${\bullet}H$, ${\bullet}O$, ${\bullet}HO_2$) and molecular species ($H_2O_2$, $H_2$, $O_2$) in large amount in water, we have used the atmospheric pressure plasma. Among the reactive and non-reactive species, the hydroxyl radical (${\bullet}OH$) plays important role due to its higher oxidation potential (E0: 2.8 V). Therefore, in this work we have checked the degradation of various dyes such as methyl orange, methylene blue and congo red using different type of atmospheric pressure plasma sources (Indirect jet and direct jet). To check the degradation we have used the UV-visible spectroscopy, HPLC and LC-MS spectroscopy. Further, to estimate role of ${\bullet}OH$ on the degradation of dyes we have studied the molecular dynamic simulation.

  • PDF

Effect of Ozone and UV Treatment of Groundwater on the Quality of Wine (지하수의 오존과 UV처리가 탁주의 품질특성에 미치는 영향)

  • Park, Young-Gyu;Kim, Hee-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.255-261
    • /
    • 2004
  • Experiments using ozone are presented for the water purification and wine quality improvement. Advanced oxidation process results reveal water treatment by both ozone and UV radiation increases quality of the takju prepared using a Korean conventional nuruk than with ozone-treatment or convectional method only. Water quality was enhanced by ozone treatment, resulting in 85% reduction of hardness, and 30% increase in total glucose produced due to increased conductivity and biodegradability of water. Although initially decreased slightly due to oxidation of takju, higher than expected ethanol production was observed, with ozone plus UV treatment resulting in 20% higher production compared with other methods.

A Study on the Removal of Sulfate in Li2CO3 by Recrystallization (재결정화법을 이용한 탄산리튬 내 황산이온 제거에 관한 연구)

  • Kim, Ki-Hun;Cho, Yeon-Chul;Jang, In-Hwan;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.27-34
    • /
    • 2020
  • In order to remove sulfate(SO42-) and purify the Li2CO3, dissolution and recrystallization of crude Li2CO3 using distilled water and HCl solution was performed. When Li2CO3 was dissolved using distilled water, the amount of dissolved Li2CO3(wt.%) increased as the solution temperature decrease and showed about 1.50 wt.% at 2.5℃. In addition, when Na2CO3 was added and the Li2CO3 solution was recrystallized, the recrystallization(%) increased with increasing temperature, resulting in a 49.00 % at 95 ℃. On the other hand, when Li2CO3 was dissolved using HCl solution, there was no effect of reaction temperature. As the concentration of HCl solution increased, the amount of dissolved Li2CO3(wt.%) increased, indicating 7.10 wt.% in 2.0 M HCl solution. When the LiCl solution was recrystallized by adding Na2CO3, it exhibited a recrystallization(%) of 86.10 % at a reaction temperature of 70 ℃, and showed a sulfate ion removal(%) of 96.50 % or more. Finally, more than 99.10 % of Na and more than 99.90 % of sulfate were removed from the recrystallized Li2CO3 powder through water washing, and purified Li2CO3 with a purity of 99.10 % could be recovered.

Effects of the Surface Roughness of a Graphite Substrate on the Interlayer Surface Roughness of Deposited SiC Layer (SiC 증착층 계면의 표면조도에 미치는 흑연 기판의 표면조도 영향)

  • Park, Ji Yeon;Jeong, Myung Hoon;Kim, Daejong;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.122-126
    • /
    • 2013
  • The surface roughness of the inner and outer surfaces of a tube is an important requirement for nuclear fuel cladding. When an inner SiC clad tube, which is considered as an advanced Pressurized Water Cooled Reactor (PWR) clad with a three-layered structure, is fabricated by Chemical Vapor Deposition (CVD), the surface roughness of the substrate, graphite, is an important process parameter. The surface character of the graphite substrate could directly affect the roughness of the inner surface of SiC deposits, which is in contact with a substrate. To evaluate the effects of the surface roughness changes of a substrate, SiC deposits were fabricated using different types of graphite substrates prepared by the following four polishing paths and heat-treatment for purification: (1) polishing with #220 abrasive paper (PP) without heat treatment (HT), (2) polishing with #220 PP with HT, (3) #2400 PP without HT, (4) polishing with #2400 PP with HT. The average surface roughnesses (Ra) of each deposited SiC layer are 4.273, 6.599, 3.069, and $6.401{\mu}m$, respectively. In the low pressure SiC CVD process with a graphite substrate, the removal of graphite particles on the graphite surface during the purification and the temperature increasing process for CVD seemed to affect the surface roughness of SiC deposits. For the lower surface roughness of the as-deposited interlayer of SiC on the graphite substrate, the fine controlled processing with the completed removal of rough scratches and cleaning at each polishing and heat treating step was important.

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

Visible Light-based Photocatalytic Degradation by Transition Metal Oxide (전이 금속 산화물을 이용한 가시광선 기반 광촉매 분해)

  • Lee, Soomin;Park, Yeji;Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.299-307
    • /
    • 2019
  • Photocatalysis is an environment friendly technique for degrading organic dyes in water. Tungsten oxide is becoming an active area of research in photocatalysis nanomaterials for having a smaller bandgap than the previously favored titanium dioxide. Synthesis of hierarchical structures, doping platinum (Pt), coupling with nanocomposites or other semiconductors are investigated as valid methods of improving the photocatalytic degradation efficiency. These impact the reaction by creating a redshift in the wavelength of light used, effecting charge transfer, and the formation/recombination of electron-hole pairs. Each of the methods mentioned above are investigated in terms of synthesis and photocatalytic efficiency, with the simplest being modification on the morphology of tungsten oxide, since it does not need synthesis of other materials, and the most efficient in photocatalytic degradation being complex coupling of metal oxides and carbon composites. The photocatalysis technology can be incorporated with water purification membrane by modularization process and applied to advanced water treatment system.

The Design Status of the Irradiation Facility for Fuel Test (핵연료 시험용 노내조사시험설비의 설계 현황)

  • Park, Kook-Nam;Sim, Bong-Shick;Ahn, Sung-Ho;Yoo, Seong-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.310-315
    • /
    • 2007
  • The FTL has been developed to be able to irradiate test fuels at the irradiation hole(IR1 hole) by considering its utility and user's irradiation requirements. FTL consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). Test condition in IPS such as pressure, temperature and the water quality, can be controlled by OPS. For safety assurance IPS is designed to have dual stainless steel pressure vessel and OPS is composed of main cooling water system, emergency cooling water system, LMP(letdown, make-up, purification) system, etc. FTL Conceptual design was set up in 2001, basic design had completed including a design requirement, basic piping & instrument diagram (P&ID), and the detail design in 2004. In 2005, the development team carried out purchase and manufacture hardware and make a contract for construction work. FTL construction work began on August, 2006 and ended on March, 2007. After FTL development which is expected to be finished by 2008, FTL will be used for the irradiation test of the new PWR-type fuel and can maximize the usage of HANARO.

  • PDF