• Title/Summary/Keyword: Advanced Treatment Process

Search Result 1,051, Processing Time 0.035 seconds

The Effects of Cyclic Heat Treatment Process for Fine Microstructure of TiAl Cast Alloy (주조용 TiAl 합금의 조직 미세화를 위한 반복열처리 공정 조건에 관한 연구)

  • Kong, Man-Sik;Yang, Hyunseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.195-200
    • /
    • 2019
  • For expanding the applications and workability of TiAl alloy, elongation is very important property. Fine microstructure is needed for elongation and physical properties of TiAl alloys. In this study, The effects of cyclic heat treatment process for fine microstructure of Ti-46Al-Nb-W-Cr-Si-C alloy, which was made by VAR (vacuum arc remelting) and VIM(vacuum induction melting) centrifugal casting process, was investigated. Cycle heat treatment process was very effective for recrystallization of this TiAl system, which has microstructure size of $50{\sim}100{\mu}m$ through pre-heat treatment, cyclic heat treatment in ${\alpha}+{\gamma}$ phase region and solution heat treatment respectively. Refined grain size was finally confirmed by photos of optical microscope and scanning electron microscope.

Design of a Wastewater Treatment Plant Upgrading to Advanced Nutrient Removal Treatment Using Modeling Methodology and Multivariate Statistical Analysis for Process Optimization (하수처리장의 고도처리 upgrading 설계와 공정 최적화를 위한 다변량 통계분석)

  • Kim, MinJeong;Kim, MinHan;Kim, YongSu;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.589-597
    • /
    • 2010
  • Strengthening the regulation standard of biological nutrient in wastewater treatment plant(WWTP), the necessity of repair of WWTP which is operated in conventional activated sludge process to advanced nutrient removal treatment is increased. However, in full-scale wastewater treatment system, it is not easy to fine the optimized operational condition of the advanced nutrient removal treatment through experiment due to the complex response of various influent conditions and operational conditions. Therefore, in this study, an upgrading design of conventional activated sludge process to advanced nutrient removal process using the modeling and simulation method based on activated sludge model(ASMs) is executed. And a design optimization of advanced treatment process using the response surface method(RSM) is carried out for statistical and systematic approach. In addition, for the operational optimization of full-scale WWTP, a correct analysis about kinetic variables of wastewater treatment is necessary. In this study, through partial least square(PLS) analysis which is one of the multivariable statistical analysis methods, a correlation between the kinetic variables of wastewater treatment system is comprehended, and the most effective variables to the advanced treatment operation result is deducted. Through this study, the methodology for upgrading design and operational optimization of advanced treatment process is provided, and an efficient repair of WWTP to advanced treatment can be expected reducing the design time and costs.

Development of Pre-treatment for Tin Recovery from Waste Resources (주석 함유 폐자원의 공정부산물 전처리 기술)

  • Jin, Y.H.;Jang, D.H.;Jung, H.C.;Lee, K.W.
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.142-146
    • /
    • 2014
  • Fundamental experiences have been studied for development of pre-treatment process of Sn by-products such as solders. Dry and wet separation/recovery processes were considered by the differences of physical properties. The by-products, which are analyzed by solder metal and oxides. The metal and oxide were simply separated by dry ball-milling process for 12 hours, after that recovery metal powder might be reusable as lead or lead-free solders. In terms of wet separation process, samples were dissolved in $HNO_3+H_2O_2$ and the precipitation were analyzed by $SnO_2$. Overall efficiency of recovery might be increasing via developing simple pre-treatment process.

Treatment Efficiency and Organic Matter Characterization of Wastewater through Activated Sludge Process and Advanced Wastewater Treatment Process (활성슬러지공정과 고도처리공정에 따른 하수처리수의 처리효율과 유기물 특성)

  • Hong, JiHea;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.807-813
    • /
    • 2004
  • Wastewater was treated by two different treatment processes; activated sludge process and advanced wastewater treatment process (KNR process) using lab-scale experiment. Two treated wastewater showed good treatment efficiency of organic matter removal, up to 90% removal. Nitrogen and phosphorus were not effectively removed though activated sludge process, while KNR process showed good removal efficiency of nitrogen and phosphorus; 56% nitrogen removal and 95% phosphorus removal. KNR process showed better removal efficiency of organic matter, nitrogen, and phosphorus compared to activated sludge process. Organic matter characterization was tracked though measurement of UV scan, SUVA, and XAD fractionation. Treated wastewater showed higher SUVA value than wastewater influent, indicting less aromatic characteristic of organic matter. XAD fractionation showed hydrophilic fraction decreased though wastewater treatment, suggesting microbes preferentially digest hydrophilic and aliphatic molecules rather than hydrophobic and aromatic molecules of organic matter.

Cost Evaluation for the Decision of Advanced Treatment Processes (최적 고도정수처리공정 선정을 위한 경제성 평가)

  • Lee, Kyung-Hyuk;Shin, Heung-Sup;An, Hyo-Won;Chae, Sun-Ha;Lim, Jae-Lim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.511-516
    • /
    • 2008
  • Since 1989, Advanced drinking water treatment processes began to build in Korea, especially the water treatment plants around the Nak-dong river stream due to sequential pollutant accidents. Moreover, Advanced drinking water treatment processes, ozone and GAC, are again to be built in water treatment plants around Han-river stream to control taste and odor, micro pollutants. However, there are still a lot of discussion to decide the processes to apply for advanced treatment. Thus there are still need to understand clearly on the cost evaluation of each advanced treatment processes. The cost evaluation was accomplished based on the data of six water treatment plants which are currently being either operating or constructing. Exceptionally, PAC(Powdered Activated Carbon) process was evaluated with cost estimation from construction company. The capital cost per unit volume of ozone process was significantly decreased as the treatment capacity increased. The capital cost was in the order of GAC, ozone and GAC. The operation cost decreased in the order of PAC, GAC and ozone. The total cost considering present value shows that ozone process covers 84% of ozone and GAC process for $30,000m^3/d$ capacity while it covers less than 35% for over 140 thousands $m^3/d$ capacity. Comparing GAC only, and ozone/GAC process, ozone/GAC process is more cost effective for high capacity water treatment plant.

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT-DEFORMED AlMg4 ALLOYS WITH THE VARIATIONS OF Mn, Fe, AND Si CONTENTS

  • DA B. LEE;BONG H. KIM;KWEON H. CHOI;SEUNG Y. YANG;NAM S. KIM;SEONG H. HA;YOUNG O. YOON;HYUN K. LIM;SHAE KIM;SOONG K. HYUN
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1255-1259
    • /
    • 2020
  • This paper aims to investigate the microstructural evolution and mechanical properties of hot-deformed AlMg4 alloys with Mn, Fe, and Si as the main impurities. For this purpose, solidification behavior and microstructural evolution during hot-rolling and heat-treatment processes are investigated by using theoretical calculations and experimental characterization. The crystallization and morphological transformation of intermetallic Al3Fe, Al6Mn, and Mg2Si phases are revealed and discussed in terms of the variation in chemical composition. Following a homogenization heat-treatment, the effect of heat treatment on the intermetallic compounds is also investigated after hot-rolling. It was revealed that the Mg2Si phase can be broken into small particles and spherodized more easily than the Al3Fe intermetallic phase during the hot-rolling process. For the Mn containing alloys, both yield and ultimate tensile strength of the hot-rolled alloys increased from 270 to 296 MPa while elongation decreased from 17 to 13%, which can be attributed to Mn-containing intermetallic as well as dispersoid.

Improvement of Organic Substances Indicators by Linked Ultra Violet-Advanced Oxidation Process After Ozonation for Anaerobic Digested Wastewater (소화탈리액 대상 오존 전처리와 Ultra Violet-Advanced Oxidation Process 연계 처리를 통한 유기물질 지표 개선)

  • Jaiyeop Lee;Jesmin Akter;Ilho Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.253-259
    • /
    • 2023
  • Bioreactors are devices used by sewage treatment plants to process sewage and which produce active sludge, and sediments separated by solid-liquid are treated in anaerobic digestion tanks. In anaerobic digestion tanks, the volume of active sludge deposits is reduced and biogas is produced. After dehydrating the digestive sludge generated after anaerobic digestion, anaerobic digested wastewater, which features a high concentration of organic matters, is generated. In this study, the decomposition of organic carbon and nitrogen was studied by advanced oxidation process. Ozone-microbubble flotation process was used for oxidation pretreatment. During ozonation, the TOC decreased by 11.6%. After ozone treatment, the TOC decreased and the removal rate reached 80.4% as a result of the Ultra Violet-Advanced Oxidation Process (UV-AOP). The results with regard to organic substances before and after treatment differed depending on the organic carbon index, such as CODMn, CODCr, and TOC. Those indexes did not change significantly in ozone treatment, but decreased significantly after the UV-AOP process as the linkage treatment, and were removed by up to 39.1%, 15.2%, and 80.4%, respectively. It was confirmed that biodegradability was improved according to the ratio of CODMn to TOC. As for the nitrogen component, the ammonia nitrogen component showed a level of 3.2×102 mg/L or more, and the content was maintained at 80% even after treatment. Since most of the contaminants are removed from the treated water and its transparency is high, this water can be utilized as a resource that contains high concentrations of nitrogen.

Development of the Automatic Control System for the Advanced Phosphorus Treatment in Sewage Treatment Plant (하수처리시설에서 인 고도처리를 위한 자동제어시스템 개발에 관한 연구)

  • Kim, Seon-Gok;Lee, Ho-Sik;Jun, Tae-Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.300-304
    • /
    • 2012
  • It has a limitation to satisfy the phosphorus effluent criteria of 0.2 mg/L which will be reinforced from 2012 with the Biological Nutrient Removal (BNR) process. The chemical coagulation process has been operated in parallel with the biological treatment process for advanced treatment of phosphorous in the developed countries including Europe. However, the coagulation process has some disadvantages such as the desired goal may not be achieved without injecting the optimum dosage of the coagulant. This study developed the automatic control system to inject the optimum dosage of phosphorous coagulant into the coagulation process. The adopted coagulant was 10% Poly Aluminum Chloride (PAC) in this study. The automatic control system developed in this study was adopted for the treatment of the phosphorus from the effluent in SBR process. The automatic control system was composed of the data receiving part, the optimum coagulant dosage control part and the data transmit part. The result of the phosphorous advanced treatment of the SBR effluent using the automatic control system showed the removing efficiency over 95% consistently with the phosphorous concentration under 0.02 ~ 0.15 mg/L. The reproducibility analysis for checking the safety of automatic control system showed more than 95% correlation.

Progresses in membrane and advanced oxidation processes for water treatment

  • Khulbe, K.C.;Feng, C.Y.;Matsuura, T.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.181-200
    • /
    • 2012
  • At present water crisis is not an issue of scarcity, but of access. There is a growing recognition of the need for increased access to clean water (drinkable, agricultural, industrial use). An encouraging number of innovative technologies, systems, components, processes are emerging for water-treatment, including new filtration and disinfectant technologies, and removal of organics from water. In the past decade many methods have been developed. The most important membrane-based water technologies include reverse osmosis (RO), ultrafiltration (UF), microfiltration (MF), and nanofiltration. Beside membrane based water-treatment processes, other techniques such as advanced oxidation process (AOP) have also been developed. Some unconventional water treatment technology such as magnetic treatment is also being developed.

Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater (난분해성 산업폐수 처리를 위한 고도산화기술)

  • Kim, Min Sik;Lee, Ki-Myeong;Lee, Changha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.445-462
    • /
    • 2020
  • Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensively studied for the treatment of nonbiodegradable organics in water and wastewater. Among different AOTs developed up to date, ozonation and the Fenton process are the representative technologies that widely used in the field. Based on the traditional ozonation and the Fenton process, several modified processes have been also developed to accelerate the production of reactive radicals. This article reviews the chemistry of ozonation and the Fenton process as well as the cases of application of these two AOTs to industrial wastewater treatment. In addition, research needs to improve the cost efficiency of ozonation and the Fenton process were discussed.