• 제목/요약/키워드: Advanced Nuclear Fuel Cycle

검색결과 113건 처리시간 0.025초

ELECTROCHEMICAL PROCESSING OF USED NUCLEAR FUEL

  • Goff, K.M.;Wass, J.C.;Marsden, K.C.;Teske, G.M.
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.335-342
    • /
    • 2011
  • As part of the Department of Energy's Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

A Reduced-Boron OPR1000 Core Based on the BigT Burnable Absorber

  • Yu, Hwanyeal;Yahya, Mohd-Syukri;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.318-329
    • /
    • 2016
  • Reducing critical boron concentration in a commercial pressurized water reactor core offers many advantages in view of safety and economics. This paper presents a preliminary investigation of a reduced-boron pressurized water reactor core to achieve a clearly negative moderator temperature coefficient at hot zero power using the newly-proposed "Burnable absorber-Integrated Guide Thimble" (BigT) absorbers. The reference core is based on a commercial OPR1000 equilibrium configuration. The reduced-boron ORP1000 configuration was determined by simply replacing commercial gadolinia-based burnable absorbers with the optimized BigT-loaded design. The equilibrium cores in this study were directly searched via repetitive Monte Carlo depletion calculations until convergence. The results demonstrate that, with the same fuel management scheme as in the reference core, application of the BigT absorbers can effectively reduce the critical boron concentration at the beginning of cycle by about 65 ppm. More crucially, the analyses indicate promising potential of the reduced-boron OPR1000 core with the BigT absorbers, as its moderator temperature coefficient at the beginning of cycle is clearly more negative and all other vital neutronic parameters are within practical safety limits. All simulations were completed using the Monte Carlo Serpent code with the ENDF/B-VII.0 library.

Analysis of Remote Operation involved in Spent Nuclear Fuel Conditioning Process using its Virtual Mockup

  • Yoon, Ji-Sup;Kim, Sung-Hyun;Song, Tai-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.840-845
    • /
    • 2004
  • The remote operation of the Advanced Spent Fuel Conditioning Process (ACP) is analyzed by using the 3D graphic simulation tools. Since the spent nuclear fuel, which is a high radioactive material, is processed in the ACP, the ACP equipment is operated in intense radiation fields as well as in a high temperature. Thus, the equipment is operated in a remote manner and should be designed with consideration for the remote handling and maintenance. Also suitable remote handling technology needs to be developed along with the design of the process concepts. For this we developed a graphic simulator, which provides the capability of verifying the remote operability of the ACP without the fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in the real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time developing a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF

HIGH BURNUP FUEL ISSUES

  • Rudling, Peter;Adamson, Ron;Cox, Brian;Garzatolli, Friedrich;Strasser, Alfred
    • Nuclear Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.1-8
    • /
    • 2008
  • One of the major current challenges to nuclear energy lies in its competitiveness. To stay competitive the industry needs to reduce maintenance and fuel cycle costs, while enhancing safety features. Extended burnup is one of the methods applied to meet these objectives However, there are a number of potential fuel failure causes related to increased burnup, as follows: l) Corrosion of zirconium alloy cladding and the water chemistry parameters that enhance corrosion; 2) Dimensional changes of zirconium alloy components, 3) Stresses that challenge zirconium alloy ductility and the effect of hydrogen (H) pickup and redistribution as it affects ductility, 4) Fuel rod internal pressure, 5) Pellet-cladding interactions (PCI) and 6) pellet-cladding mechanical interactions (PCMI). This paper discusses current and potential failure mechanisms of these failure mechanisms.

Assessing the Potential of Small Modular Reactors (SMRs) in Spent Nuclear Fuel Management: A Review of the Generation IV Reactor Progress

  • Hong June Park;Sun Young Chang;Kyung Su Kim;Pascal Claude Leverd;Joo Hyun Moon;Jong-Il Yun
    • 방사성폐기물학회지
    • /
    • 제21권4호
    • /
    • pp.571-576
    • /
    • 2023
  • The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.

CONSIDERATIONS REGARDING ROK SPENT NUCLEAR FUEL MANAGEMENT OPTIONS

  • Braun, Chaim;Forrest, Robert
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.427-438
    • /
    • 2013
  • In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U.S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U.S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R&D project to be conducted by U.S. and ROK scientists. One leading to the development of a demonstration centralized away-fromreactors spent fuel storage facility. The other involve further R&D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper.

Current Status of the Radioactive Waste Management Program in Korea

  • Park, H-S;Hwang, Y-S;Kang, C-H
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 Proceedings of the 4th Korea-China Joint Workshop on Nuclear Waste Management
    • /
    • pp.140-142
    • /
    • 2004
  • Since the April of 1978, Korea has strongly relied on the nuclear energy for electricity generation. As of today, eighteen nuclear power plants are in operation and ten are to be inaugurated by 2015. The installed nuclear capacity is 15, 716 MW as of the end of 2002, representing 29.3% of the nation's total installed capacity. The nuclear share in electricity remains around 38.9 at the end of 2002, reaching at the level of 119 billion kWh's. New power reactors, KSNP's (Korea Standard Nuclear Power Plant) are fully based on the domestic technologies. More advanced reactors such as KNGR (Korea Next Generation Reactor) will be commercialized soon. Even though the front end nuclear cycle enjoys one of the best positions in the world, there have been some chronical problems in the back end fuel cycle. That's the one of the reason why we need more active R&D programs in Korea and active international and regional cooperation in this area. The everlasting NIMBY problem hinders the implementation of the nation's radioactive waste management program. We expect that the storage capacity for the LILW(Low and Intermediate Level radioactive Waste) will be dried out soon. The situation for the spent fuel storage is also not so favorable too. The storage pools for spent fuel are being filled rapidly so that in 2008, some AR pools cannot accommodate any more new spent nuclear fuels. The Korean Government in strong association with utilities and national academic and R&D institutes have tried its best effort to secure the site for a LILW repository and a AFR site. Finally, one local community, Buan in Jeonbook Province, submitted the petition for the site. At the end of the last July, the Government announced that the Wido, a small island in Buan, is suitable for the national complex site. The special force team headed by Dr IS Chang, president of KAERI teamed with Government officials and many prominent scholars and journalists agreed that by the evidences from the preliminary site investigation, they could not find any reason for rejecting the local community's offer.

  • PDF

21세기 차세대 한국형 원자로 전략 -기술경제 제약요인 비교- (Korean Nuclear Reactor Strategy for the Early 21st Century -A Techno-Economic and Constraints Comparison-)

  • Lee, Byong-Whi;Shin, Young-Kyun
    • Nuclear Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.20-29
    • /
    • 1991
  • 본 연구에서는 2030년까지의 전력수요, 전력생산중 원자력발전의 비중, 기존 원전표준화 계획, 국내제작 능력을 반영하여 개량형 경수로와 중수로 (CANDU)에 대한 참조 시나리오를 도출하고 각 참조 시나리오와 핵연료주기 전략별 핵연류주기 비용, 원자력 발전 단가, 우라늄 소요량, 인력 소요량을 계산하였다. 참조 시나리오들에 대한 분석을 한 결과 우라늄 자원활용, 원전안전성, 인력활용 측면이 노형 전략수립의 주요 인자로 작용하며 발전단가는 전략별로 큰 차이가 없는 것으로 나타났다.

  • PDF

Thermal-hydraulic modeling of CAREM-25 advanced small modular reactor using the porous media approach and COBRA-EN modified code

  • Saeed Zare Ganjaroodi;Maryam Fani;Ehsan Zarifi;Salaheddine Bentridi
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1574-1583
    • /
    • 2024
  • Small Modular Reactors (SMRs) are compact nuclear reactors designed to generate electric power up to 300 MWe. They could be assembled in factory, and then transported to be directly installed on-stie. CAREM (Central Argentina de Elementos Modulares) is a national SMR development project, based on light water reactor technology supervised by Argentina's National Atomic Energy Commission (CNEA). It is a natural circulation-based SMR with an indirect-cycle, including specific items and parts that simplify the design and improve safety performance. In this paper, the thermal-hydraulic study of CAREM-25 advanced small modular reactor is conducted by using COBRA-EN modified code and the Porous Media Approach (PMA) for the first time. According to PMA approach, each fuel assembly is modeled and divided into a network of lumped regions. While complex geometries are defined, the thermal-hydraulic parameters such as temperature and density are calculated for coolant and fuel rods. The obtained results show that the temperature in the fuel center may reach a peak around 1280 K in the hottest fuel assembly. Finally, the comparison of results from both methods (modified COBRA-EN and PMA) presented an appropriate consistency.