• Title/Summary/Keyword: Adsortpion

Search Result 5, Processing Time 0.018 seconds

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Granular Activated Carbon (입상 활성탄을 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • In the present study, batch experiments were carried out for the utilizatioin of activated carbon as a potential adsorbent to remove a hazardous malachite green from an aqueous solution. The effects of various parameters such as temperature, contact time, initial concentration on the adsorption system were investigated. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Langmuir isotherm model. From determined separation factor, the activated carbon could be employed as an effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing both the initial concentration of malachite green and the adsoprtion temperature. Thermodynamic parameters like that activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the adsorption nature. The activation energy calculated from Arrhenius equation indicated that the adsortpion of malachite green on the zeolite was physical process. The negative Gibbs free energy change ($\Delta$G = -3.68~-7.76 kJ/mol) and the positive enthalpy change ($\Delta$H = +26.34 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range of 298~318 K.

A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis (분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구)

  • Kim, Ingyeom;Nah, In Wook;Park, Sehkyu
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.854-862
    • /
    • 2016
  • As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, $Co_3O_4$ catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, X-ray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of $Co_3O_4$ catalysts. As a result, bare-$Co_3O_4$ which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.

Ion Adsorption Characteristics of IRN-150 Mixed Resin and Removal Behavior of $^{14}C$ Radionuclide from Spent Resin by Stripping Solutions (IRN-150 혼상수지의 이온 흡착특성 및 폐수지로부터 탈착용액을 이용한 $^{14}C$ 핵종의 제거 특성)

  • Yang, Ho-Yeon;Won, Jang-Sik;Choi, Young-Ku;Park, Geun-Il;Kim, In-Tae;Kim, Kwang-Wook;Song, Kee-Chan;Park, Hwan-Seo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.373-384
    • /
    • 2006
  • Spent ion-exchanged resin generated from various purification systems in CANDU reactor was contaminated with high activity of $^{14}C$ radionuclide. This paper describes the results of fundamental study to develop the applicable technology for the treatment of this spent resin. Based on the adsorption capacity of inactive $HCO_3$ ion and other anions on IRN-150 mixed resin, the removal characteristics of $HCO_3$ ion adsorbed on to IRN-150 by various stripping solutions were evaluated. Maximum adsorption amount of the $HCO_3$ ion onto IRN-150 raw resin was about 11 mg-C/g-resin which agrees with the theoretical adsorption amount of this resin. Adsorption affinity of various anions such as $CS,\;CO,\;Na\;NH_4$ was analyzed in single and multi-component systems. From the results of removal characteristics of the $HCO_3$ ion adsorbed on IRN-150 by various stripping solutions, $NH_4H_2PO_4$ stripping solution is more effective than $NaNO_3,\;Na_3PO_3$ solutions for the complete removal of $^{14}C$ radionuclide from the IRN-150 spent resin.

  • PDF

Equilibrium, Kinetics and Thermodynamic Parameters Studies on Metanil Yellow Dye Adsorption by Granular Activated Carbon (입상활성탄에 의한 메타닐 옐로우 염료의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.96-102
    • /
    • 2014
  • Adsorption of metanil yellow onto granular activated carbon were studied in a batch system. Various operation parameters such as adsorbent dosage, pH, initial concentration, contact time and temperature were optimized. Experimental equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm. The equilibrium process was described well by Freundlich isotherm model. From determined separation factor (1/n), adsorption of metanil yellow by granular activated carbon could be employed as effective treatment method. By analysis of kinetic experimental data, the adsorption process were found to confirm to the pseudo second order model with good correlation and the adsorption rate constant ($k^2$) decreased with increasing initial concentration. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The activation energy was determined as 23.90 kJ/mol. It was found that the adsortpion of metanil yellow on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G=-2.16{\sim}-6.55kJ/mol$) and the positive enthalpy change (${\Delta}H=+23.29kJ/mol$) indicated the spontaneous and endothermic nature of the adsorption process, respectively.