• Title/Summary/Keyword: Adsorption rate

Search Result 1,048, Processing Time 0.021 seconds

Evaluation of Indoor Air Improvement of Matrix Using Activated clay as Adsorption Material (활성백토를 흡착재로 활용한 경화체의 실내 공기 개선 평가)

  • Jeong, Hyun-Su;Kim, Yeon-Ho;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.189-190
    • /
    • 2020
  • The importance of indoor air quality management has recently been highlighted due to environmental problems such as indoor air pollution. Among indoor air pollutants, carbon dioxide occurs in cooking, heating, burning, and causes forgetfulness, dementia and amnesia. Radon, which occurs in building materials, soil and ground, is a type 1 carcinogen that causes lung cancer in the body through breathing. These substances can be released from the room through ventilation, but there is a limit to reducing the amount of indoor activity due to reduced ventilation conditions due to increased indoor activity time. However, these substances can be removed from the gas by adsorption. The purpose of this study was to identify the properties of granular active and powdered active white soil and mix them to make cement-based active white soil adsorbent matrix for carbon dioxide, fine dust and radon gas adsorption, and to evaluate indoor air improvements according to the mixing scale. The results of the experiment showed that active carbon dioxide adsorption performance increased for carbon dioxide and radon as the exchange rate increased through physical adsorption. In particular, the higher the replacement rate of the granular active bag, the better adsorption performance was shown.

  • PDF

Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates (시멘트 수화물의 염소이온 흡착거동에 따른 메커니즘 및 해석기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The chloride ions, responsible for the initiation of the corrosion mechanism, intrude from the external medium into the concrete. A part of the intruding chloride ions will be retained by the hydration products of the binder in concrete, either through chemical adsorption or by physical adsorption. Since the hydration products of cement are responsible for the chloride binding in concrete, this study focused on the chloride binding in individual hydrate. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. In particular, AFm phase showed a chemical adsorption with slow rate in 40 days, while C-S-H phase showed binding behaviors with 3 stages including momentary physical adsorption, physico-chemical adsorption, and chemical adsorption. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. It is believed that the approach suggested in this study can provide us with a good solution to understand the mechanism on chloride adsorption with hydrates and to calculate a rate of chloride penetration with original source of chloride ions, for example, marine sand at initial time or sea water penetration later on.

Dyeing properties of cotton fabric with pomegranate colorants and antimicrobial properties (석류색소의 면섬유에 대한 염색성과 항균성)

  • 신윤숙;조은경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.3
    • /
    • pp.577-585
    • /
    • 2001
  • Dyeing properties of the colorants extracted from pomegranate hull on cotton fabric were investigated. Effects of dyeing conditions and mordanting on dye uptake, color change and colorfastness were explored. Cationic agent treatment was done for cotton to improve low dyeability in natural dyeing. In addition antimicrobial activity of the cotton fabrics dyed with pomegranate colorants was examined by the shake flask method. Pomegranate colorants showed low affinity to cotton fiber and its adsorption isotherm was Freundlich type. Therefore, hydrogen bonding was involved in the adsorption of pomegranate colorants onto cotton fiber. Mordants did not significantly increase dye adsorption. Pomegranate colorants produced mainly yellow color on cotton fabric. In order to improve dye uptake, cotton was cationized by treating with Cationon UK(quarterly ammonium salt) and chitosan. The cationized cotton with Cationon UK showed higher dye uptake and shorter dyeing time, compared with the untreated cotton. Chitosan treated cotton also showed high dye uptake, but chitosan was less effective compared with Cationon UK. Fastness to washing, perspiration, and rubbing was not improved by mordanting and cationizing treatment, but light fastness was increased by all mordants and cationic agent. As dye concentration increased, bacterial reduction rate was increased and mordants did not significantly increase bacterial reduction rate.

  • PDF

Temperature Dependence of Initial Adsorption Rate of Soybean (콩의 초기 흡습속도의 온도의존성)

  • Kim, Jong-Goon;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.360-363
    • /
    • 1989
  • The initial moisture adsorption of soybeans was examined under the conditions : RH, 57-86% ; temperature, $16^{\circ}-34^{\circ}C$, and storage time, 100 hours. The changes in moisture content as a function of time held a relation: log dw/dt=b log t + log a, where w is the moisture content (%, db), t is time (hour) and a and b are the parameters which were calculated from the experimental data. The calculated moisture content from the equation agreed well with the measured moisture content. The activation energy of initial adsorption rate was about 15500cal/g-mole in all soybeans. The initial adsorption rate at temperature $16^{\circ}-28^{\circ}C$ could be estimated from a following equation : log(log dw/dt)=-15500/2.303RT.

  • PDF

Study on of Process Parameters for Adsorption of Reactive Orange 16 Dye by Activated Carbon (활성탄에 의한 Reactive Orange 16 염료 흡착에 대한 공정 파라미터 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.667-674
    • /
    • 2020
  • The adsorption of reactive orange 16 (RO 16) dye by activated carbon was investigated using the amount of adsorbent, pH, initial concentration, contact time and temperature as adsorption variables. The investigated process parameters were separation coefficient, rate constant, rate controlling step, activation energy, enthalpy, entropy, and free energy. The adsorption of RO 16 was the highest at pH 3 due to the electrostatic attraction between the cations (H+) on the surface of the activated carbon and the sulfonate ions and hydroxy ions possessed by RO 16. Isotherm data were fitted into Langmuir, Freundlich and Temkin isotherm models by applying the evaluated separation factor of Langmuir (RL=0.459~0.491) and Freundlich (1/n=0.398~0.441). Therefore, the adsorption operation of RO 16 by activated carbon was confirmed as an appropriate removal method. Temkin's adsorption energy indicated that this adsorption process was physical adsorption. The adsorption kinetics studies showed that the adsorption of RO 16 follows the pseudo-second-order kinetic model and that the rate controlling step in the adsorption process was the intraparticle diffusion step. The positive enthalpy change indicated an endothermic process. The negative Gibbs free energy change decreased in the order of -3.16 <-11.60 <-14.01 kJ/mol as the temperature increased. Therefore, it was shown that the spontaneity of the adsorption process of RO 16 increases with increasing temperature.

Applicability of Composite Beads, Spent Coffee Grounds/Chitosan, for the Adsorptive Removal of Pb(II) from Aqueous Solutions

  • Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.536-545
    • /
    • 2019
  • An experiment was conducted to evaluate the adsorptive removal of Pb(II) from an aqueous solution using a mixture of spent coffee grounds and chitosan on beads (CC-beads). Various parameters affecting the adsorption process of Pb(II) using CC-beads were investigated. Based on the experimental data, the adsorption kinetics and adsorption isotherms were analyzed for their adsorption rate, maximum adsorption capacity, adsorption energy and adsorption strength. Moreover, the entropy, enthalpy and free energy were also calculated by thermodynamic analysis. According to the FT-IR analysis, a CC-bead has a very suitable structure for easy heavy metal adsorption. The process of adsorbing Pb(II) using CC-beads was suitable for pseudo-second order kinetic and Langmuir model, with a maximum adsorption capacity of 163.51 (mg/g). The adsorption of Pb(II) using CC-beads was closer to chemical adsorption than physical adsorption. In addition, the adsorption of Pb(II) on CC-beads was exothermic and spontaneous in nature. CC-beads are economical because they are inexpensive and also the waste can be recycled, which is very significant in terms of the continuous circulation of resources. Thus, CC-beads can compete with other adsorbents.

Stabilization Behavior of Heavy Metal ions by Treatment Conditions (처리조건에 따른 중금속 이온의 안정화 거동)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.583-588
    • /
    • 2003
  • Cation exchange capacity of clay, white clay and zeolite was measured by the adsorption test for 3 different heavy metal (Cd, Cr, Zn) standard solutions whose concentrations were varied by 10, 20, 30 ppm and pH were varied by 3, 5, 7, 9, respectively. The adsorption rate of Cd and Zn increased with increasing pH and slowly increased with increasing pH above pH 5. However, adsorption rate of Cr did not increase with increasing pH. Especially, Cr adsorption rate of the mixture of clay and white clay at pH 5 showed an half decrease compared to that at pH 3. The adsorption rate of mixed heavy metal solutions was in the order of Cd, Zn > Cr; however, the order was changed by Fe>Pb, Cu>Cr>Zn>Cd in case of Cu, Fe and Pb addition.

Removal of Cd(II) by Cation Exchange Resin in Differential Bed Reactor (미분층반응기에서 양이온 교환수지에 의한 카드뮴(II)의 제거)

  • Kim, Jong-Tae;Chung, Jaygwan G.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1193-1203
    • /
    • 2000
  • In this study, in order to remove Cd(II) from aqueous solutions, strongly acidic cation exchange resin(SK1B) by Diaion Co. was employed as an adsorbent. Experiments were mainly performed in two parts at room temperature($25{\pm}5^{\circ}C$) : batch tests and adsorption kinetics tests. In batch tests adsorption equilibrium time, pH effects, temperature effects, several adsorption isotherms, and finally desorption tests were examined. In differential bed tests, an optimum flow rate and an overall adsorption rate were obtained. In the batch experiment, adsorption capability increased with pH and became constant above pH 6 and adsorption quantity increased with temperature. Batch experimental data found that Freundlich and Sips adsorption isotherms were more favorable than Langmuir adsorption isotherm over the range of concentration (5~15ppm). The desorbent used in the desorption test was hydrochloric acid solution with different concentrations(0.01~2N). The degree of regeneration increased with concentration of desorbent and decreased slightly with the number of regeneration. In the continuous flow process using a differential bed reactor, the optimum flow rate was $564m{\ell}/min$ above which the film diffusion resistance was minimized. The overall adsorption rate for the removal of Cd(II) by cation exchange resin was found as follows ; $r=1.3785C_{fc}^{1.2421}-2.0907{\times}10^{0.0746C_i}\;q_e^{0.0121C_i-0.0301}$

  • PDF

Adsorption and Oxidation Reaction Rate of $SO_2$ in Slurries of Activated Carbon (활성탄 슬러리를 이용한 $SO_2$ 가스의 흡착 및 산화반응 속도)

  • 최용택;신창섭;이태희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.41-46
    • /
    • 1987
  • Adsorption and reaction studies were made for the catalytic oxidation in aqueous slurries of activated carbon at room temperature and atmospheric pressure. In order to analyze the reaction rate, the mechanism was assumed by the steps of nonhomogeneous catalytic reaction. The experimental result show that oxidation rate was controlled by the reaction between adsorbed molecular oxygen and sulfur dioxide on the catalyst surface. Ar room temperature, the equat5ion of reaction rate was given as $ro_2 = 2.49 \times 10^{-7} P_O_2^{0.604}$.

  • PDF

The Influence of Coexisting Material on the Photocatalytic Removal of Humic Acid (광촉매를 이용한 Humic Acid 광부해시 공존물질이 광분해에 미치는 영향)

  • Ryu, Seong Pil;Hyeon, Gyeong Ja;O, Yun Geun
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This study aimed at improving the $TiO_2$ photocatalytic degradation of HA. A set of tests was first conducted in the dark to study the adsorption of HA at different coexisting material concentration. Adsorption rate increased with adding cation ion but decreased with adding bicarbonate ion. The photodegradation of HA in the presence of UV irradiation was investigated as a function of different experimental condition: initial concentration of HA, $TiO_2$ weight, pH, air flow rate and coexisting material. It was increased either at low pH or by adding cation ion. The increase of cation strength in aqueous solution could provide a favorable condition for adsorption of HA on the $TiO_2$ surface and therefore enhance the photodegradation rate. It was found that bicarbonate ions slowed down the degradation rate by scavening the hydroxyl radicals.