• 제목/요약/키워드: Adsorption rate

검색결과 1,048건 처리시간 0.027초

Saccharomyces cerevisiae와 Aureobasidium pullulans의 수은제거 모델 (Biosorption Model of Mercury by Saccharomyces Cerevisiae and Aureobasidium Pullulans)

  • 서정호;서명교;강신묵;이국의;최윤찬;조정구;김의용
    • 한국환경보건학회지
    • /
    • 제23권4호
    • /
    • pp.21-25
    • /
    • 1997
  • A study on the removal of mercury by Saccharomyces cerevisiae and Aureobasidium pullulans was done, in which the model of adsorption isotherm and adsorption rate was proposed. The adsorption isotherm of mercury by S. cerevisiae was accorded with Langmuir model but A. pullulans was followed to Freundlich model. The amount of mercury removed by A. pullulans was higher than that of S. cerevisiae, but the adsorption rate of mercury by A. pullulans was slower than that of S. cerevisiae. In a rapid adsorption process, therefore, it is more useful to use S. cerevisiae as a biosobent.

  • PDF

ADSORPTION OF PB(2) ON METAL OXIDE PARTICLES CONTAINING ALUMINUM AND TITANIUM IN AQUEOUS SOLUTIONS

  • Kim, Moon-Sun;Hong, Sung-Chul;Chung, JayGwanG.
    • Environmental Engineering Research
    • /
    • 제10권2호
    • /
    • pp.45-53
    • /
    • 2005
  • Metal oxide particles with mole ratio of aluminum: titanium of 1:1 were synthesized by a sol-gel method. Langmuir (a) and Freundlich (b) adsorption isotherms of dissolved lead [Pb(Ⅱ)] ion on the metal oxide particles containing aluminum and titanium were determined as follows, respectively,(a) , (b) at pH 6where, correlation coefficients (R2) of Langmuir and Freundlich adsorption isotherms were 0.95 and 0.96, respectively.The overall adsorption rate of Pb(Ⅱ) on the metal oxide particles containing aluminum and titanium was determined by a differential bed reactor. The overall adsorption rate at pH 6 was as a following equation.at pH 6

PAN 선구체로부터 활성 탄소섬유의 생산과 분석(II) (Preparation and Analysis of Activated Carbon Fiber from PAN Precursor(II))

  • 김진홍;최중열;박병기;정경락;김공주
    • 한국염색가공학회지
    • /
    • 제4권4호
    • /
    • pp.97-103
    • /
    • 1992
  • For manufacturing a high sorptive ACF, we used orthognal array experimental design to get optimum condition. The ability of ACF was measured by $CCl_4$ adsorption and showed those manufacturing conditions were effective in the order of treatment time>oxidative gas>treatment temperature. The optimal condition presented the maximum adsorption rate was at 90$0^{\circ}C$ for 6 minutes with $CO_2$/$H_2O$ gas in the PAN based ACF manufacturing process. The adsorption rate of developed ACF in this experiment was over 100%.

  • PDF

분말 소나무 수피를 이용한 수용액 중의 납 이온 흡착 (Adsorption of Lead Ions from Aqueous Solutions Using Milled Pine Bark)

  • 오미영;김영관
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.389-395
    • /
    • 2006
  • The use of pine bark, a natural adsorbent prepared from Korean Red Pine (Pinus densifloral), was studied for its adsorption behavior of lead ion from aqueous solution. Adsorption experiments were carried out on lead ion concentrations of 10mg/L. Adsorption of lead ion could be described by both Langmuir and Freundlich adsorption isotherms. Treatment of the bark with nitric acid greatly increased initial adsorption rate, and equilibrium sorption capacity increased by approximately 48%. A pseudo second-order kinetic model fitted well for the kinetic behavior of lead ion adsorption onto the bark. Acid-treated bark demonstrated its adsorption capacity quite close to that of granular activated carbon. Results of this study indicated that ion exchange and chelation were involved in the adsorption process.

Adsorption Behavior of Environmental Hormone Bisphenol A onto Mesoporous Silicon Dioxide

  • Fan, Xianghong;Tu, Bing;Ma, Hongmei;Wang, Xuefen
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2560-2564
    • /
    • 2011
  • Mesoporous silicon dioxide (meso-$SiO_2$) was prepared using cetyltrimethylammonium bromide as the structure-directing reagent and tetraethyl orthosicate as the silicon source. The influence of pH value on the adsorption behavior of bisphenol A (BPA) was investigated. The adsorption capacity of BPA onto meso-$SiO_2$ increases slightly with pH value from 2 to 6, and then gradually decreases as further improving pH value. The effect of temperature was also studied, and the adsorption capacity of BPA gradually declines with increasing temperature. The adsorption kinetics and thermodynamics of BPA were examined. It is found that the adsorption of BPA onto meso-$SiO_2$ is in good agreement with Langmuir adsorption model. The rate constant of adsorption is $5.17{\times}10^{-3}g\;mg^{-1}\;min^{-1}$, and the maximum adsorption capacity is as high as 353.4 $mg\;g^{-1}$ at 20 $^{\circ}C$.

화학적 개질을 통한 별 불가사리 바이오차 표면 분석 및 중금속 흡착 효율 평가 (Surface Analysis and Heavy Metal Adsorption Evaluation of Chemically Modified Biochar Derived from Starfish (Asterina pectinifera))

  • 장하린;문덕현
    • 한국물환경학회지
    • /
    • 제38권2호
    • /
    • pp.82-94
    • /
    • 2022
  • In this study, chemically modified biochar (NSBP500, KSBP500, OSBP500) derived from starfish was utilized to improve the adsorption ability of the SBP500 (Starfish Biochar Pyrolyzed at 500℃) in a solution contaminated with heavy metals. According to the biochar modification performance evaluation batch tests, the removal rate and adsorption amount of NSBP500 increased 1.4 times for Cu, 1.5 times for Cd, and 1.2 times for Zn as compared to the control sample SBP500. In addition, the removal rate and adsorption amount of KSBP500 increased 2 times for Cu, 1.8 times for Cd, and 1.2 times for Zn. The removal rate and adsorption amount of OSBP500 increased 5.8 times for Cu. The FT-IR analysis confirmed the changes in the generation and movement of new functional groups after adsorption. SEM analysis confirmed Cu in KSBP500 was in the form of Cu(OH)2 and resembled the structure of nanowires. The Cd in KSBP500 was densely covered in cubic form of Cd(OH)2. Lead(Pb) was in the form of Pb3(OH)2(CO3)2 in a hexagonal atomic layer structure in NSBP500. In addition, it was observed that Zn was randomly covered with Zn5(CO3)2(OH)6 pieces which resembled plates in KSBP500. Therefore, this study confirmed that biochar removal efficiency was improved through a chemical modification treatment. Accordingly, adsorption and precipitation were found to be the complex mechanisms behind the improved removal efficiency in the biochar. This was accomplished by electrostatic interactions between the biochar and heavy metals and ion exchange with Ca2+.

음이온교환 수지를 이용한 바나듐/텅스텐 혼합용액으로부터 바나듐/텅스텐 분리회수에 관한 연구 (Separation of Vanadium and Tungsten from Simulated Leach Solutions using Anion Exchange Resins)

  • 전종혁;김홍인;이진영;라제쉬 쿠마
    • 자원리싸이클링
    • /
    • 제31권6호
    • /
    • pp.25-35
    • /
    • 2022
  • 본 연구는 겔 타입의 음이온교환 수지를 이용하여 바나듐과 텅스텐 이온의 흡·탈착 거동과 분리조건을 규명하였다. 용액의 초기산도에 따른 흡착실험에서 바나듐은 강산성 및 강염기성에서 흡착률이 현저히 낮아지며, 텅스텐은 강염기성에서 흡착률이 낮게 나타났다. 반응온도의 상승은 흡착반응속도 및 최대흡착량의 증가에 영향을 주었으며, 텅스텐은 최대흡착량에 미치는 영향이 미미하였다. 이온교환 수지에 대한 바나듐과 텅스텐의 흡착등온실험은 두 이온 모두 Langmuir 흡착등온식에 적합하였으며, 텅스텐의 경우 폴리옥소메탈레이트화 되어 이온 간의 결합이 이루어져 다분자층 흡착의 형태가 나타나 Freundlich 흡착등온식에도 적합한 것으로 나타났다. 두 이온교환 수지 모두 유사 2차 반응속도모델에서 잘 모사되었으며, 탈착용액의 종류에 따른 바나듐과 텅스텐의 탈착특성에서 바나듐은 HCl 수용액 및 NaOH 수용액 모두 탈착이 이루어 졌으며, 텅스텐은 HCl 수용액에서 탈착이 전혀 이루어지지 않아 탈착공정을 통한 두 이온의 분리가 가능하였다. 탈착반응은 반응 개시 후 30분 이내에 평형에 도달하였으며, 90% 이상 회수가 가능하였다.

활성탄소섬유상에서 CH4/CO2 혼합가스의 흡착 특성 (Adsorption Characteristics of $CH_4/CO_2$ Mixed Gases on Activated Carbon Fibers)

  • 문승현;심재운
    • 한국대기환경학회지
    • /
    • 제20권5호
    • /
    • pp.655-662
    • /
    • 2004
  • An adsorption process to recover the pure $CH_4\;and\;CO_2$ from its mixture was examined. In this study, activated carbon fibers were used as a selective adsorbent. The activated carbon fibers has 78~94% micropore volume and 10.5~20.3${\AA}$ narrow pore size, and showed high adsorption rate and the good selectivity for $CO_2$ under the ambient pressure. The ACF with high surface area showed short mass transfer zone and long breakthrough time and, its adsorption capacity depended on the microporosity. Compared with single component adsorption, the amount adsorbed $CO_2$ on ACF increased by the roll-up of $CH_4$ in mixed gases. The adsorption selectivity increased as now rate and $CO_2$ concentration of mixed gases increased, showing 5.2 selectivity for 75% $CO_2$ concentration.

Kinetics of water vapor adsorption by vacuum-dried jujube powder

  • Lee, Jun Ho;Zuo, Li
    • 한국식품저장유통학회지
    • /
    • 제24권4호
    • /
    • pp.505-509
    • /
    • 2017
  • Water vapor adsorption kinetics of vacuum-dried jujube powder were investigated in temperature and relative humidity ranges of 10 to $40^{\circ}C$ and 32 to 75%, respectively. Water vapor was initially adsorbed rapidly and then reached equilibrium condition slowly. Reaction rate constant for water vapor adsorption of vacuum-dried jujube powder increased with an increase in temperature. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Good straight lines were obtained with plotting of $1/(m-m_0)$ vs. 1/t. It was found that water vapor adsorption kinetics of vacuum-dried jujube powder was accurately described by a simple empirical model, and temperature dependency of the reaction rate constant followed the Arrhenius-type equation. The activation energy ranged from 50.90 to 56.00 kJ/mol depending on relative humidity. Arrhenius kinetic parameters ($E_a$ and $k_0$) for water vapor adsorption by vacuum-dried jujube powder showed an effect between the parameters with the isokinetic temperature of 302.51 K. The information on water vapor adsorption kinetics of vacuum-dried jujube powder can be used to establish the optimum condition for storage and processing of jujube.

Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies

  • Khan, Muhammad Imran;Ansari, Tariq Mahmood;Zafar, Shagufta;Buzdar, Abdul Rehman;Khan, Muhammad Ali;Mumtaz, Fatima;Prapamonthon, Prasert;Akhtar, Mehwish
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.79-85
    • /
    • 2018
  • In this work, batch adsorption of anionic dye acid green-25 (AG-25) from aqueous solution has been carried out at room temperature using anion exchange membrane (DF-120B) as a noval adsorbent. The effect of various experimental parameters such as contact time, membrane dosage, ionic strength and temperature on the adsorption of dye were investigated. Kinetic models namely pseudo-first-order, pseudo-second-order, Elovich, liquid film diffusion, Bangham and modified freundlich models were employed to evaluate the experimental data. Parameters like adsorption capacities, rate constant and related correlation coefficients for every model are calculated and discussed. It showed that adsorption of AG-25 onto DF-120B followed pseudo-first-order rate expression. Thermodynamic study indicates that adsorption of AG-25 onto DF-120B is an exothermic and spontaneous process.