• 제목/요약/키워드: Adsorption efficiency

검색결과 930건 처리시간 0.03초

Surface Modification of Phosphoric Acid-activated Carbon in Spent Coffee Grounds to Enhance Cu(II) Adsorption from Aqueous Solutions

  • Choi, Suk Soon;Choi, Tae Ryeong;Choi, Hee-Jeong
    • 공업화학
    • /
    • 제32권5호
    • /
    • pp.589-598
    • /
    • 2021
  • The purpose of this study was to analyze the efficiency with which phosphorylated spent coffee grounds (PSCG) remove cationic Cu(II) ions from an aqueous solution. The pHpzc of the SCG was 6.43, but it was lowered to 3.96 in the PSCG, confirming that an acidic functional group was attached to the surface of the PSCG. According to FT-IR analysis, phosphorylation of the SCG added P=O, P-O-C (aromatic), P=OOH, and P-O-P groups to the surface of the adsorbent, and the peaks of the carboxyl and OH groups were high and broad. Also, the specific surface area, mesopore range, and ion exchange capacity increased significantly by phosphorylation. The adsorption kinetics and isothermal experiments showed that Cu(II) adsorption using SCG and PSCG was explained by PSO and Langmuir models. The maximum Langmuir adsorption capacity of SCG and PSCG was 42.23 and 162.36 mg/g, respectively. The adsorption process of both SCG and PSCG was close to physical adsorption and endothermic reaction in which the adsorption efficiency increased with temperature. PSCG was very effective in adsorbing Cu(II) in aqueous solution, which has great advantages in terms of recycling resources and adsorbing heavy metals using waste materials.

사용 후 유리세라믹(Lithium-Aluminum-Silicate)을 활용한 중금속 제거 기초 연구 (A Basic Study for Removal of Heavy Metal Elements from Wastewater using Spent Lithium-Aluminum-Silicate(LAS) Glass Ceramics)

  • 고민석;왕제필
    • 자원리싸이클링
    • /
    • 제31권4호
    • /
    • pp.49-55
    • /
    • 2022
  • 본 연구에서는 인덕션 탑플레이트(induction top plate) 소재로 사용된 후 폐기되는 사용 후 Li2O-Al2O3-SiO2계 결정화 유리를 활용하여 중금속 용액 내 존재하는 중금속(Pb, Cd, Cr6+, Hg) 이온들의 제거 실험을 진행하였다. 중금속 흡착제로 사용된 흡착제의 양, 흡착 반응 시간, 초기 중금속 원소의 농도, 초기 용액의 pH 등의 반응 조건에 따른 중금속 제거 효율의 변화를 조사하였다. 사용 후 LAS 첨가량이 증가할수록 중금속 제거 효율이 상승하였다. 흡착 반응 시간은 흡착 특성에 큰 영향을 미치는 것으로 확인되었으며, 모든 중금속 원소들의 제거 효율이 상승하였다. 특히 반응 시간에 따라서 Cd의 경우 흡착제거 효율이 크게 개선되었다. 초기 중금속 용액 농도는 중금속 제거 효율에 영향을 미치지 않았다. 중금속 용액의 pH는 중금속 제거 효율에 영향을 미쳤는데, Cd의 경우 pH증가에 따라 중금속 제거 효율이 증가하였으며, Pb, Cr6+는 감소하였다. Hg는 pH가 흡착 특성에 큰 영향을 미치지 않았다.

조습제 적용 박물관 전시케이스의 동적 습도조절 특성 해석 (Analysis of Dynamic Humidity Control Characteristics of Museum Showcase with Adsorption Material)

  • 김재용;오명도
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1070-1077
    • /
    • 2003
  • This study was undertaken to judge the quality of air-tightened exhibition cases and to predict the dynamic variation of the relative humidity in the showcase. We performed a lot of experiments for the a few conditions and we numerically calculated the air change rate and the relative humidity in the showcase with the Artsorb under the same conditions. In all cases we confirmed that the numerical results about the relative humidity in the showcase had a good agreement with the experimental ones. Through the experiments of humidity control, we found out that the adsorption efficiency is varied with the location and the amount of the Artsorb. And the numerical results showed that the adsorption material is always needed to keep on the appropriate humidity condition in the showcase even though any kind of the showcases are used.

작업환경 중 황화수소 제거를 위한 첨착활성탄소섬유의 흡착특성 (Adsorption Characteristics of Impregnated Activated Carbon Fiber for the Removal of Hydrogen Sulfide at the Working Environment)

  • 김기환;신창섭
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.127-133
    • /
    • 1999
  • One of the major malodorous gas at the working place is hydrogen sulfide and impregnated activated carbon fiber(ACF) was used as a adsorbent to remove this gas. ACF is treated and impregnated with chemicals to increase the adsorption capacity. The experiments showed that the adsorption efficiency for hydrogen sulfide was increased in case of impregnation with $Na_2CO_3$ or KI. Also, by the surface treatment with NaOH, the adsorption efficiency was increased however not so much as impregnation. KI was the best impregnant for this purpose and the optimum concentration was 9wt%. The adsorption capacity of hydrogen sulfide was more than 500mg/g ACF.

  • PDF

연속반응기에서 Agar를 담체로 고정한 조류 Spirulina의 중금속 흡착특성 (Biosorption Characteristics of Heavy Metal in the Continuous Reactor Packed with Agar Immobilized Algae, Spirulina)

  • 신택수;연익준;김재용
    • 환경위생공학
    • /
    • 제13권1호
    • /
    • pp.174-184
    • /
    • 1998
  • Biosorption characteristics were investigated to discuss the use of agar entrapped Spirulina to remove of heavy metal ions from polluted waters. Agar immobilized algae were used as bioadsorbent in continuous reactor for heavy metal ions removal. The process solution contains Pb, Cu, and Cd as single ion and binary ions. In the adsorption of single heavy metal ions by agar immobilized Spirulina, the adsorption reached within 1hr and observed diffusion limitation differed from the free algal cell adsorption. The optimum pH for the adsorption of heavy metals was 4.5 but the influence of pH decreased less than that of free algal cell. Also, the adsorption characteristics of single heavy metal ions with agar immobilized Spirulina fitted the BET isotherm. Both of experiments of free algal cell and agar immobilized algae showed higher removal efficiency in the single ion solutions than binary ions solutions. The experimental results in the packed column with agar immobilized algae were over 90% of removal efficiency for the Pb, Cu, and Cd in single ion solutions.

  • PDF

Adsorption and Desorption Characteristics of Methyl iodide on Silver ion-Exchanged Synthetic Zeolite at High Temperature

  • Park, Geun-Il;Park, Byung-Sun;Cho, Il-Hoon;Kim, Joon-Hyung;Ryu, Seung-Kon
    • Nuclear Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.504-513
    • /
    • 2000
  • The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver ion-exchanged zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver ion-exchanged level for the effective removal of methyl iodide at temperature up to 38$0^{\circ}C$. The degree of adsorption efficiency of methyl iodide on silver ion-exchanged zeolite is strongly dependent of silver ion-amount and process temperature. The influence of temperature, methyl iodide concentration and silver ion-exchanged level on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It would be facts that the effective silver ion-exchanged level was about 10 wt%, based on the degree of silver utilization for the removal of methyl iodide.

  • PDF

Pulp Mold as a Packaging Material for Maintaining the Freshness of Fruits and Vegetables

  • Won, Jong-Myoung;Song, Che-Yun
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.455-458
    • /
    • 2006
  • The oak and pine charcoal were used to develop the internal packaging raw material for maintaining the freshness of vegetables and fruits, and to investigate the possibility in the application for pulp mold packaging. The effects of the charcoal type, species, particle size, and grammage on the adsorption efficiency of ethylene gas were studied. White charcoal has superior ethylene gas adsorption performance to those of black charcoal. Pine charcoal was superior to oak charcoal in the ethylene gas adsorption. Higher gas adsorption was obtained by the higher grammage sheet. The difference in the adsorption efficiency was not significant between ONP and KOCC.

  • PDF

섬유상활성탄소를 이용한 Humic Acid 공존시 페놀의 흡착특성에 관한 연구 (A Study on the Adsorption Characteristics of Phenol in the presence of Humic Acid Using Activated Carbon Fiber)

  • 탁성제;서성원;김성순;김진만
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.54-61
    • /
    • 2000
  • Recently, our circumstances are threatened by an accident that leakage of under ground storage tank and illegal dumping of synthetic organic compounds at chemical plants and many treatment methods, Activated carbon adsorption, Ozonization, Membrane filtration and Photocatalystic oxidation, are developed to remove such a synthetic organic compounds. And it has reported that Activated carbon adsorption have a great removal efficiency to nondegradable matters and organic compounds which have a high molecular weight. Comparing with other adsorbents, Activated carbon adsorption have a worse efficiency when ad desorption speed is low. Thus improved type of adsorbents was invented and one of those is Activated Carbon Filter. The purpose of this study was getting information about adsorption characteristic phenol which can be applied Activated Carbon Fiber and Granular Activated Carbon. In detail, With comparing removal characteristics of phenol in the presence Humic Acid using Activated Carbon Fiber(ACF) and Granular Activated. Carbon(GAC), it is to certify an effective application of Activated Carbon Fiber. At the range of this study, Batch test, Isotherm adsorption test and Factorial analysis, following conclusion were obtained from the results of this study. Batch test was carried to know time of adsorption equilibrium. In this study about time of adsorption equilibrium by ACF was faster than GAC's, for developed micropore of ACF. From the result of phenol adsorption test, High removal rate of adsorption is shown at pH 5. The result of lsotherm adsorption test, it has represented that the Freundlich's isotherm is most suitable one in others, that a ACF's adsorption capacity is more excellent than GAC's. Adsorption of phenol exiting humic acid is decreased getting raised humic acid concentration. Since ACF's micropore is developed at this time, an effect of high molecular humic acid is lower. Factorial analysis was carried to know about Main effect which was injection dosage of adsorbent in the range of this study.

  • PDF

Removal of Aqueous Cr(VI) using Magnetite Nanoparticles Synthesized from a Low Grade Iron Ore

  • Do, Thi May;Suh, Yong Jae
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.221-230
    • /
    • 2013
  • We demonstrated the efficacy of magnetic nanoparticles (MNPs) produced from a low grade iron ore as an adsorbent for the removal of Cr(VI), a toxic heavy metal anion present in wastewater. The adsorption of Cr(VI) by these MNPs strongly depended on the dosage of MNPs, the initial concentration of the Cr(VI) solutions, and pH. The highest Cr(VI) adsorption efficiency of 22.0 mg/g was observed at pH 2.5. The adsorption data were best fit with the Langmuir isotherm and corresponded to a pseudo-second-order kinetic model. The used adsorbent was regenerated by eluting in highly alkaline solutions. Sodium bicarbonate showed the highest desorption efficiency of 83.1% among various eluents including NaOH, $Na_2HPO_4$, and $Na_2CO_3$. Due to the high adsorption capacity, the simple magnetic separation, and the high desorption efficiency, this nano-adsorbent produced from inexpensive and abundant resources may attract the attention of the industries to apply for removing various metal anionic contaminants from wastewater.

Catalytic Oxidative and Adsorptive Desulfurization of Heavy Naphtha Fraction

  • Abbas, Mohammad N.;Alalwan, Hayder A.
    • Korean Chemical Engineering Research
    • /
    • 제57권2호
    • /
    • pp.283-288
    • /
    • 2019
  • Catalytic removal of sulfur compounds from heavy naphtha (HN) was investigated using a combination of an oxidation process using hydrogen peroxide and an adsorption process using granulated activated carbon (GAC) and white eggshell (WES). This study investigated the impact of changing several operating parameters on the desulfurization efficiency. Specifically, the volume ratio of $H_2O_2$ to HN (0.01~0.05), agitation speed ($U_{speed}$) of the water bath shaker ($100-500{\pm}1rpm$), pH of sulfur solution (1~5), amount of adsorbent (0.1~2.5 g), desulfurization temperature ($25{\sim}85{\pm}1^{\circ}C$) and contact time (10~180 minutes) were examined. The results indicate that the desulfurization efficiency resulting from catalytic and adsorption processes of GAC is better than that of WES for oxidation and removing sulfur compounds from HN due to its high surface area. The desulfurization efficiency depends strongly on all investigated operating parameters. The maximum removal efficiency of GAC and WES achieved by this study was 86 and 65, respectively.