• Title/Summary/Keyword: Adsorption at Low Pressures

Search Result 4, Processing Time 0.017 seconds

Adsorption of Aromatic Compounds on a QCM System Coated with Polymer Films (고분자 필름이 코팅된 QCM 시스템에 의한 방향족 화합물의 흡착)

  • Hwang, Min-Jin;Shim, Wang-Geun;Moon, Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.233-239
    • /
    • 2013
  • A quartz crystal microbalance (QCM) system coated with poly (isobutylene), polystyrene, and poly (methyl methacrylate) has been prepared to measure the adsorption amounts of benzene, toluene, and p-xylene at very low pressures. The resonant frequency shift of the QCM system is proportional to the increase in pressure in all experiments. The Henry's constants for all adsorbates on the polymer films are obtained from experimental data and compared with the minimum adsorption potential energies between adsorbates and the polymer films. In general, there is an explicit correlation between adsorption amount and the minimum adsorption potential energy.

Enthalpy Changes of Adsorption of Tetrafluorocarbon (CF4) and Hexafluoroethane (C2F6) on Activated Carbon

  • Shin, Jiyoung;Suh, Sung-Sup;Choi, Moon Kyu
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • Under low pressures of $CF_4$ and $C_2F_6$ up to 20.7 kPa, the equilibrium adsorbed quantity on activated carbon was experimentally examined using the volumetric method at various temperatures between 293.15 K and 333.15 K. To give the best fit to the experimental data curve, the two step model (i.e., Langmuir model for the first layer adsorption and then Freundlich physisorption) is suggested. The method of initial slope yielded the enthalpy of adsorption for the first step while we could apply the Clausius-Clapeyron equation to find the heat of adsorption of the second step. They are 25.9 kJ/mol and 11.8 kJ/mol, respectively, with $CF_4$, and 38.7 and 38.2 kJ/mol with $C_2F_6$.

Effects of Ultra-high Pressure Homogenization on the Emulsifying Properties of Whey Protein Isolates under Various pH

  • Lee, Sang-Ho;Subirade, Muriel;Paquin, Paul
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.324-329
    • /
    • 2008
  • The effect of ultra-high pressure homogenization on the emulsifying properties of whey protein was investigated in a model emulsion made with whey protein isolate and soya oil under various pH. The emulsifying properties, the average diameter of the oil droplets ($d_{vs}$), and the protein load, were measured for each emulsion produced at different homogenization pressures (50 to 200 MPa) and pH values (4.6 to 8.0). According to the results of variance analysis and response surface, the pH had more influence on oil droplet size and protein load than homogenization pressure. The model equations, which were obtained by response surface analysis, show that pH and homogenization pressure had the major effect on oil droplet size and protein load. Higher homogenization pressure decreased the average droplet size and the protein load. Homogenization at high pressure, as opposed to low pressure, causes no overprocessing, but the effect was pH-dependent. The average diameter of the oil droplets increased slightly by decreasing the pH from 8.0 to 6.5 and then increased dramatically toward the isoelectric point of whey protein (i.e., at pH 4.6). Moreover associated droplets were found at acidic pH and their size was increased at high temperature.

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF