• Title/Summary/Keyword: Adsorption, Oxide

Search Result 358, Processing Time 0.019 seconds

Soft-template Synthesis of Magnetically Separable Mesoporous Carbon (자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • In this study, we synthesized mesoporous carbon (Carbonized Ni-FDU-15) containing nanoporous structures and magnetic nanoparticles. Carbonized Ni-FDU-15 was synthesized via evaporation-induced self-assembly (EISA) and direct carbonization by using a triblock copolymer (F127) as a structure-directing agent, a resol precursor as a carbon-pore wall forming material, and nickel (II) nitrate as a metal ion source. The mesoporous carbon has a well-ordered two-dimensional hexagonal structure. Meanwhile, nickel (Ni) metal and nickel oxide (NiO) were produced in the magnetic nanoparticles in the pore wall. The size of the nanoparticles was about 37 nm. The surface area, pore size and pore volume of Carbonized Ni-FDU-15 were $558m^2g^{-1}$, $22.5{\AA}$ and $0.5cm^3g^{-1}$, respectively. Carbonized Ni-FDU-15 was found to move in the direction of magnetic force when magnetic force was externally applied. The magnetic nanoparticle-bearing mesoporous carbons are expected to have high applicability in a wide variety of applications such as adsorption/separation, magnetic storage media, ferrofluid, magnetic resonance imaging (MRI) and drug targeting, etc.

Effect of Partially Oxidized Ti Powder on Electrical Properties and Microstructures of $BaTiO_3$-based Ceramics ($BaTiO_3$계 세라믹스의 전기적 성질과 미세조직에 미치는 부분산화 Ti 분말 첨가의 영향)

  • Kim, Jun-Gyu;Jo, Won-Seung;Park, Gyeong-Sun
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.671-676
    • /
    • 2000
  • $BaTiO_3$-based ceramics with partially oxidized Ti powders were prepared by sintering at $1350^{\circ}C$ for 1 h in v vacuum, and then heated in air. In this study, the effect of partially oxidized Ti powders on electrical properties and microstructures of $BaTiO_3$-based ceramics was investigated. It was found out that the semiconductive $BaTiO_3$-based ceramics beζame to show excellent PTCR (more than $10^5$) characteristic by adding 5~7 vol% of partially oxidized Ti powder. Also, it was found out that the sintered compact had extremely porous and fine-grained microstructure. The relative density and grain size of sintered compact with 5 vol% of partially oxidized Ti powders were 54% and $1.3\;{\mu\textrm{m}}$, respectively. The mechanism for the development of PTCR characteristic in $BaTiO_3$-based ceramics with partially oxidized Ti powders due to the adsorption of oxygen at grain boundaries, and could be explained, based on Heywang model.

  • PDF

Effect of Core Morphology on the Decomposition of CCI₄ over the Surface of Core/Shell Structured Fe₂O₃/MgO Composite Metal Oxides

  • 김해진;강진;박동곤;권호진;Kenneth J. Klabunde
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.831-840
    • /
    • 1997
  • Core/shell structured composite metal oxides of Fe2O3/MgO were prepared by thermal decomposition of Fe(acac)3 adsorbed on the surface of MgO cores. The morphology of the composites conformed to that of the MgO used as the cores. Broad powder X-ray diffraction peaks shifted toward larger d, large BET surface area (∼350 m2/g), and the size of crystalline domains in nano range (4 nm), all corroborate to the nanocrystallinity of the Fe2O3/MgO composite which was prepared by using nanocrystalline MgO as the core. By use of microcrystalline MgO as the core, microcrystalline Fe2O3/MgO composite was prepared, and it had small BET surface area of less than 35 m2/g. AFM measurements on nanocrystalline Fe2O3/MgO showed a collection of spherical aggregates (∼80 nm dia) with a very rough surface. On the contrary, microcrystalline Fe2O3/MgO was a collection of plate-like flat crystallites with a smooth surface. The nitrogen adsorption-desorption behavior indicated that microcrystalline Fe2O3/MgO was nonporous, whereas nanocrystalline Fe2O3/MgO was mesoporous. Bimodal distribution of the pore size became unimodal as the layer of Fe2O3 was applied to nanocrystalline MgO. The macropores in a wide distribution which the nanocrystalline MgO had were absent in the nanocrystalline Fe2O3/MgO. The decomposition of CCl4 was largily enhanced by the overlayer of Fe2O3 on nanocrystalline MgO making the reaction between nanocrystalline Fe2O3/MgO and CCl4 be nearly stoichiometric. The reaction products were environmentally benign MgCl2 and CO2. Such an enhancement was not attainable with the microcrystalline samples. Even for the nanocrystalline MgO, the enhancement was not attained, if not with the Fe2O3 layer. Without the layer of Fe2O3, it was observed that the nanocrystalline domain of the MgO transformed into microcrystalline one as the decomposition of CCl4 proceeded on its surface. It appeared that the layer of Fe2O3 on the particles of nanocrystalline Fe2O3/MgO blocked the transformation of the nanocrystalline domain into microcrystalline one. Therefore, in order to attain stoichiometric reaction between CCl4 and Fe2O3/MgO core/shell structured composite metal oxide, the morphology of the core MgO has to be nanocrystalline, and also the nanocrystalline domains has to be sustained until the core was exhausted into MgCl2.

Crystallinity and Chemical Reactivity of Bimessite(δ-MnO2) Influenced by Iron (철에 의한 버네사이트의 결정도 및 화학적 활성의 변화)

  • Kim, Jae-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.327-332
    • /
    • 1999
  • Manganese (Mn) oxides in soils have been a research subject since they react with nutrients and contaminants and Mn itself is an essential element for plant growth. Birnessite was synthesized in the presence of iron (Fe) in the precipitating solution. Influence of Fe, one of common elements in soils, on crytallinity, morphology, and chemical reactivity of birnessite was examined using X-ray diffraction (XRD), electron microscope, canon exchange capacity (CEC), and chromium (Cr) oxidation capacity. With increasing Fe concentration in the precipitating solution, crystallinity and crystal size decreased. Hexagonal plates of the birnessites formed at low Fe concentration were dominant and replaced more and more by aggregate of small particles with increasing the Fe concentration. There is no significant change in CEC with changing the Fe concentration. Chromium oxidation capacity of the birnessite increased with increasing the Fe concentration. Iron in the precipitating solution poisoned crystal growth by adsorption on the surface and increased nucleation. Since Fe is a common constituent under pedogenic environment and Fe and Mn oxides often coexist in Mn oxide nodules, the birnessite with small particle, low crystallinity, and high chemical reactivity is the form which is more likely to be formed in soils. The high CEC ($140cmol_ckg^{-1}$) and oxidation capacity of birnessite indicate that birnessite can be used in environment and agriculture.

  • PDF

Cs Fixation and Leaching Characteristics of High Temperature-Treated Todorokite (고온 처리된 토도로카이트의 Cs 고정 및 용출 특성)

  • Seongyeop Kim;Yeongkyoo Kim;Changyun Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • Todorokite is a manganese oxide mineral containing Mg2+ in a tunnel structure in which MnO6 octahedra share corners. In order to investigate the suitability and efficiency of high temperature-treated todorokite as a material for adsorption and fixation of Cs, Cs was ion exchanged and the amount of leached Cs from todorokite was measured. The todorokite used in this study was synthesized by transforming Na-birnessite to Mg-buserite and used as a precursor. After high temperature treatment, Cs exchanged todorokite changed to birnessite and hausmannite as the temperature increased. The amount of leached Cs was investigated for Cs exchanged todorokite which was reacted with distilled water and 1 M NaCl solution at different reaction times. In general, for the samples reacted with 1 M NaCl solution, the fixation of Cs was quite effective, although the amount of leached Cs was greater due to the ion exchange reaction with Na. As the treatment temperature increased, the amount of leached Cs increased and then decreased again, which was related to the mineral phases formed at each temperature. As birnessite was formed, the amount of leached Cs increased, but as birnessite decreased, that decreased again. As the mineral phase changed to hausemanite, the amount of Cs decreased rapidly. The results of our study show that Cs exchanged todorokite can be used as a material that effectively fixes Cs and prevents its diffusion by high temperature treatment.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

The Preparation of Magnetic Chitosan Nanoparticles with GABA and Drug Adsorption-Release (GABA를 담지한 자성 키토산 나노입자 제조와 약물의흡수 및 방출 연구)

  • Yoon, Hee-Soo;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.541-549
    • /
    • 2020
  • The Drug Delivery System (DDS) is defined as a technology for designing existing or new drug formulations and optimizing drug treatment. DDS is designed to efficiently deliver drugs for the care of diseases, minimize the side effects of drug, and maximize drug efficacy. In this study, the optimization of tripolyphosphate (TPP) concentration on the size of Chitosan nanoparticles (CNPs) produced by crosslinking with chitosan was measured. In addition, the characteristics of Fe3O4-CNPs according to the amount of iron oxide (Fe3O4) were measured, and it was confirmed that the higher the amount of Fe3O4, the better the characteristics as a magnetic drug carrier were displayed. Through the ninhydrin reaction, a calibration curve was obtained according to the concentration of γ-aminobutyric acid (GABA) of Y = 0.00373exp(179.729X)-0.0114 (R2 = 0.989) in the low concentration (0.004 to 0.02 wt%) and Y = 21.680X-0.290 (R2 = 0.999) in the high concentration (0.02 to 0.1 wt%). Absorption was constant at about 62.5% above 0.04 g of initial GABA. In addition, the amount of GABA released from GABA-Fe3O4-CNPs over time was measured to confirm that drug release was terminated after about 24 hr. Finally, GABA-Fe3O4-CNPs performed under the optimal conditions were spherical particles of about 150 nm, and it was confirmed that the properties of the particles appear well, indicating that GABA-Fe3O4-CNPs were suitable as drug carriers.

A Study of Removal Property of Harmful Algal Blooms by Hwangto and Oriental Mineral Medicines (황토와 광물성 한약재의 적조구제 특성에 관한 연구)

  • Kim, Pil-Geun;Sung, Kyu-Youl;Jang, Young-Nam;Park, Maeng-Eon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.277-289
    • /
    • 2006
  • This study was carried out to find a new material having high removal efficiency for the harmful red tide. C. polykrikoides grow very fast and accumulate into dense and visible patches near the surface of the seawater ('Water bloom'). Some mineral medicines and Hwangto (reddish soil consist of clay minerals and Fe-oxides) were used in this study to remove C. polykrikoides. The pre-determined sprinkling ratio of mineral vs. seawater which contains approximately 5,000 cells/mL of C. polykrikoides was 10 g/L. In order to quantify the removal efficiency, the density of living cells was measured by counting with the Intervals of 0, 10, 30, and 60 minutes after sprinkling. Five Hwangtos feom different localities were examined in this study. It is found that a material with a high concentration of Fe and Al was the most effective to remove C. polykrikoides. After the sprinkling of the Hwangto showing the best removal efficiency in the test, 99% of total algaes were found to be eliminated within 60 minutes. Jeokeokji showed the highest removal efficiency among clay mineral medicines(92% removal efficiency after 60 minutes), and the rests in decreasing order are as follows: Gamto (91%) > Baekseokji (89%) > Hydromica (81%). In addition, Fe-oxide mineral medicine similarly looking as fine-grained earthy Daejaseok showed 100% removal efficiencyafter 30 minutes, and Wooyoeryang, 95% after 60 minutes. It is noted that even little addition (1 g/L) of Daejaseok, 10% of Hwangto concentration into seawater showed the removal efficiency of 100% after 60 minutes. From the results, it could be concluded that the fine-grained earthy Daejaseok was the most effective natural mineral medicine to remove the C. polykrikoides from seawater. Under the microscope the removal mechanism was found to be activated in the following order: adsorption, swelling of chain colony, chain colony crisis and algaecide.