• Title/Summary/Keyword: Adsorbing effect

Search Result 26, Processing Time 0.026 seconds

The Effects of the Nano-sized Adsorbing Material on the Electrochemical Properties of Sulfur Cathode for Lithium/Sulfur Secondary Battery (나노 흡착제가 Li/S 이차전지용 유황양극의 전기화학적 특성에 미치는 영향)

  • Song, Min-Sang;Han, Sang-Choel;Kim, Hyun-Seok;Ahn, Hyo-Jun;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.259-269
    • /
    • 2002
  • A battery based on the lithium/elemental sulfur redox couple has the advantage of high theoretical specific capacity of 1,675 mAh/g-sulfur. However, Li/S battery has bad cyclic durability at room temperature due to sulfur active material loss resulting from lithium polysulfide dissolution. To improve the cycle life of Li/S battery, PEGDME (Poly(ethylene glycol) dimethyl ether) 500 containing 1M LiTFSI salt which has high viscosity was used as electrolyte to retard the polysulfide dissolution and nano-sized $Mg_{0.6}Ni_{0.4}O$ was added to sulfur cathode as additive to adsorb soluble polysulfide within sulfur cathode. From experimental results, the improvement of the capacity and cycle life of Li/S battery was observed( maximum discharge capacity : 1,185 mAh/g-sulfur, C50/C1 = 85 % ). Through the charge-discharge test, we knew that PEGDME 500 played a role of preventing incomplete charge-discharge $behavior^{1,2)$. And then, in sulfur dissolution analysis and rate capability test, we first confirmed that nano-sized $Mg_{0.6}Ni_{0.4}O$ had polysulfide adsorbing effect and catalytic effect of promoting the Li/S redox reaction. In addition, from BET surface area analysis, we also verified that it played the part of increasing the porosity of sulfur cathode.

A Study on Adsorption of Heavy Metal Ions Using Chitosan and Chitosan Derivative (Chitosan 및 Chitosan유도체를 이용한 중금속 이온 흡착에 관한 연구)

  • Lee, Kwang-Ill;Kwak, Chun-Geun;Jang, Byeong-Man;Kim, Young-Ju;Park, Tae-Hong;Roh, Seung-Ill;Lee, Ki-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.25-34
    • /
    • 1996
  • We have synthesized the water-insoluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of chitosan with carbon disulfide in the presence of alkali metal hydroxide, Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. To elucidate this natural polymer the capacity of adsorbing heavy metal ions, we have performed adsorption experiments using chitosan derivatives of various average molecular weights with different contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from chitosan of average molecular weight ranging $5,700{\sim}20,000$ was shown to have the highest capacity of adsorbing heavy metal ions. Adsorbing efficiency was increased as the reaction time was increased and as the reaction temperature range of $25{\sim}45^{\circ}C$. The adsorption capacity at various pH, however, appeared to vary depending on the heavy metal ions studied.

A Study on Adsorption of Heavy Metal Ions Using Water-soluble Chitosan Derivative (수용성 Chitosan 유도체를 이용한 중금속 이온 흡착에 관한 연구)

  • Lee, Kwang-Il;Kwak, Chun-Geun;Kim, Young-Ju;Jang, Buyng-Man;Kim, Sang-Ho;Lee, Ki-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 1996
  • Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. We have synthesized the water-soluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of water-soluble chitosan with carbon disulfide in the presence of alkali metal hydroxide. To elucidate this natural polymer capacity of adsorbing heavy metal ions, we have performed adsorption experiments using the water-soluble chitosan derivative various average molecular weight and of different percent contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from water-soluble chitosan of average molecular weight ranging $9,000{\sim}120,000$ was shown to have the highest capacity of adsorbing heavy metal ions. On the whole, adsorbing efficiency was increased as the reaction time goes longer and also increased as the reaction temperture goes higer in temperture range of $15^{\circ}C{\sim}45^{\circ}C$. The adsorption capacity at various pH, however, was appeared to vary depending on the heavy metal ions studied Judging from these finding, water-soluble N-dithiocarboxy chitosan sodium salt, a derivative of a biodegradable nature polymer, is believed to be a potential adsorbent for heavy metal ions since it not only is shown to lower the concentration of heavy metal ions to below the drainage quality standard, but also it would not cause acidification and hardening of soil which is one of the detrimental effects of synthetic macromolecular adsorbents present.

Cost-effective polyvinylchloride-based adsorbing membrane for cationic dye removal

  • Namvar-Mahboub, Mahdieh;Jafari, Zahra;Khojasteh, Yasaman
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2020
  • The current study focused on the preparation of low-cost PVC-based adsorbing membrane. Metakaolin, as available adsorbent, was embedded into the PVC matrix via solution blending method. The as-prepared PVC/metakaolin mixed matrix membranes were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), pure water permeability and contact angle measurements. The results confirmed the improvement of PWP and hydrophilicity due to the presence of metakaolin in the PVC matrix. Additionally the structure of PVC membrane was changed due to the incorporation of metakaolin in the polymer matrix. The static adsorption capacity of all samples was determined through dye removal. The effect of metakaolin dosage (0-7%) and pH (4, 8, 12) on dye adsorption capacity was investigated. The results depicted that the highest adsorption capacity was achieved at pH of 4 for all samples. Additionally, adsorption data were fitted on Langmuir, Freundlich, and Temkin models to determine the appropriate governing isotherm model. Finally, the dynamic adsorption capacity of the optimum PVC/metakaolin membrane was studied using dead-end filtration cell. The dye removal efficiency was determined for pure PVC and PVC/metakaolin membrane. The results demonstrated that PVC/metakaolin mixed matrix membrane had a high adsorption capacity for dye removal from aqueous solution.

Adsorption and Leaching Characteristics of the Artificial Soils Produced from Sludge (슬러지를 이용하여 생산한 인공토양의 흡착 및 용출 특성)

  • 윤춘경;김선주;임융호;정일민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.77-84
    • /
    • 1998
  • Adsorption and leaching characteristics of the artificial soils produced from water and wastewater treatment sludges were examined. The batch adsorption test and TCLP leaching test were used, and constituents of interest were heavy metals and nutrients. As, Cr, Cu, Pb, and Cd were analyzed for metals, and nitrogen and phosphorus were analyzed for nutrients. All the artificial soils showed strong adsorption and low leaching for the heavy metals, which implies that the artificial soils may not be hazardous to the environment due to heavy metals and even they can be utilized effectively to remove metals in solution like mine and industrial wastewaters. This is quite promising result because in most case heavy metals are the most concern in the application of sludge product to the farmland. For the nutrients, generally, artificial soils showed high adsorption and low leaching except artificial soil from wastewater sludge produced by low temperature firing. The artificial soils produced from water treatment sludge were active in adsorbing nutrients and showed low leaching that they can be practically used to remove nutrients in advanced treatment process of the wastewater. The artificial soils produced from wastewater treatment sludge were less active in adsorbing nutrients and showed high teaching. However, they could be used usefully if applied properly to the plant growing because of their fertilizing effect. Based on the test results, overall, the artificial soils were thought to be not hazardous to the environment and they could be more useful if applied properly.

  • PDF

Effect of Biochar bead on Adsorption of Heavy Metals

  • Kim, Ho-Jin;Lee, Hochul;Kim, Hyuck-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.351-355
    • /
    • 2014
  • In recent years, biochar has received much attention as soil amendment, enhancing soil fertility and reducing toxicity of heavy metals with its large specific surface area and high pH. Biochar has also the effect of alleviating global warming by carbon sequestration from recycling organic wastes by pyrolysis. However, scattering of fine particles of biochar is a hindrance to expand its use from human health point-of-view. Alginate, a natural polymer without toxicity, has been used for capsulation and hydrogel fabrication due to its cross-linking nature with calcium ion. In this study, the method of cross-linkage between alginate and calcium ion was employed for making dust-free biochar bead. Then an equilibrium adsorption experiment was performed for verifying the adsorption effect of biochar bead on heavy metals (cadmium, copper, lead, arsenic, and zinc). Results showed that biochar bead had effects on adsorbing heavy metals, especially lead, except arsenic.

Honeycomb Monolith Coated with Mo(VI)/ZrO2 as a Versatile Catalyst System for Liquid Phase Transesterification

  • Thimmaraju, N.;Pratap, S.R.;Senthilkumar, M.;Mohamed Shamshuddin, S.Z.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.563-570
    • /
    • 2012
  • Solid acid Mo(VI)/$ZrO_2$ with 2-10% Mo(VI) was coated on honeycomb monoliths by impregnation method. These catalytic materials were characterized by BET, $NH_3$-TPD/n-butylamine back titration, PXRD and SEM techniques. Phenyl salicylate (Salol) was synthesized via transesterification of methyl salicylate and phenol over these catalytic materials. An excellent yield (91.0%) of salol was obtained under specific reaction conditions. The effect of poisoning of acid sites of the catalytic material by adsorbing different bases and its effect on total surface acidity, powder XRD phases and catalytic activity was studied. A triangular correlation between the surface acidity, powder XRD phases and catalytic activity of Mo(VI)/$ZrO_2$ was observed. The thermally regenerated catalytic material was reused repeatedly with a consistent high yield of salol.

Photovoltaic Effect of Adsorbed Metallophthalocyanine on Zinc Oxide (프탈로시아닌이 흡착된 산화아연의 광기전력효과에 관한 연구)

  • Soun-Ok Heur;Young-Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.416-422
    • /
    • 1993
  • As a result of adsorbing phthalocyanine (metal free, ${\alpha}\;and\;{\beta}$-Cu) on zinc oxide in aqueous solution using nonionic surfactant, all of the added dye was adsorbed and Na salt of sulfonated phthalocyanine showed the Langmuir monolayer adsorption. To analyze the effect of adsorption on zinc oxide, photovoltage was measured using surface photovoltmeter. The high photovoltaic effect was observed at intrinsic wavelength of zinc oxide and wavelength of adsorbed phthalocyanine dye. Metal free phthalocyanine, ${\alpha}$-copper phthalocyanine and ${\beta}$-copper phthalocyanine showed the highest photovoltaic effect when the percentage of coverage (${\theta}_{BET}$) for zinc oxide is about 80, while sulfonated phthalocyanine showed the highest photovoltaic effect when the percentage of coverage for zinc oxide is about 30.

  • PDF

Study of Substitution Effect of Anthraquinone by SERS Spectroscopy

  • Lee, Chul-Jae;Kang, Jae-Soo;Park, Yong-Tae;Rezaul, Karim Mohammad;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1779-1783
    • /
    • 2004
  • In the present study, we carried out comparative research on the anthraquinones Raman spectrum and on the anthraquinones derivative 1,4-diamino-anthraquinone focusing on change in its intermediate in terms of pH and change in the substituent. WE use the SERS method and employ a silver sol prepared by Creighton et al.'s method. From the analysis of the UV spectrum of the mixture solution of 1,4-diamino-anthraquinone and silver sol, we could see that the 1,4-diamino-anthraquinone physically adsorbs silver sol. In terms of the adsorbing orientation, the adsorption of the nitrogen atom in the amino group is perpendicular to the surface of silver sol according to the surface selection rule. From the structure of the 1,4-diamino-anthraquinone intermediate according to the change of pH, we could see that the C=O bond is strengthened in the acidic state and weakened in the neutral and the alkaline state because of the resonance effect of the amines.

Effect of Ammonia Gas on Growth of Chemically Vapor-Deposited Carbon Nanotubes (화학기상증착법에 의한 탄소나노튜브의 성장에 미치는 암모니아 가스의 영향)

  • Lee, Dong-Gu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.418-423
    • /
    • 2010
  • Carbon nanotubes (CNTs) were synthesized by Fe-catalytic chemical vapor deposition (CVD) method about $800^{\circ}C$. The influence of process parameters such as pretreatment conditions, gas flow ratio, processing time, etc on the growth of CNTs was investigated by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Ammonia was added to acetylene source gas before and during the CNT growth. Different types of CNTs formed depending upon the processing condition. It was found that ammonia prevented amorphous carbons from adsorbing to the outer wall of CNT, resulting in purification of CNTs during CNT growth.