• Title/Summary/Keyword: Adsorbed

Search Result 1,764, Processing Time 0.029 seconds

Adsorption Isotherm Patterns According to the Interactions Between Adsorbed Particles (흡착입자간 상호작용에 따른 흡착등온선 패턴)

  • Kim, Cheol Ho
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.462-468
    • /
    • 2013
  • We study and describe-from the point of view of the interactions of the adsorbed particles-three types of the adsorption isotherms, namely, Langmuir type adsorption isotherms, phase transition type adsorption isotherms, and adsorption limited type adsorption isotherms, which are observed by experiments. By introducing and using a one dimensional statistical occupancy model, we derived analytical adsorption isotherms for the no force, the attractive force, and the repulsive force exerted on the other adsorbed particles. Our derived adsorption isotherms qualitatively pretty well agree with the experimental results of the adsorption isotherms. To specify each adsorption type, Langmuir type adsorption is a phenomenon that occurs with no forces between the adsorbed particles, phase transition type adsorption is a phenomenon that occurs with the strong attractive forces between the adsorbed particles, and adsorption limited type adsorption is a phenomenon that occurs with the repulsive forces between the adsorbed particles. The theoretical analysis-only using fundamental thermodynamics and occupancy statistics though-qualitatively quite well explains the experimental results.

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Spontaneously Adsorbed Mo Layers on Pt(111) and Pt(100) Single Crystal Electrode Surfaces

  • Han, Yoon-gu;Jung, Chang-hoon;Rhee, Choong-Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.395-399
    • /
    • 2002
  • The voltammetric behavior of spontaneously adsorbing Mo layers on Pt(111) and Pt(100) electrodes has been studied to estimate the number of electrons involved in the electrochemical processes of spontaneously adsorbed Mo and the number of the bloc ked Pt sites for hydrogen adsorption. On Pt(111) and Pt(100) surfaces, the spontaneously adsorbed Mo layers showed redox peaks at 0.10 V and 0.15 V, respectively, and continuous current-potential waves in the conventional hydrogen region. Since the potential range of the Mo redox processes on both surfaces overlapped partially with the potential range of hydrogen adsorption, the variation in the ratio of the total charge of Mo and H ($Q_H$ +$Q_{MO}$) to the hydrogen charge of clean Pt electrode ($Q_H^0$) was analyzed. From the analysis, six electrons were estimated to be involved in the electrochemical processes of the spontaneously adsorbed Mo, and four Pt sites for hydrogen adsorption were calculated to be blocked by one adsorbed Mo atom. Based on these figures and the pH dependence of the Mo redox processes, we have proposed an electrochemical equation for the spontaneously adsorbed Mo. This electrochemical equation led us to conclude that the saturation coverage of the spontaneously adsorbed Mo is 0.25. The coverage of Mo less than 0.25, however, could not be determined voltammetrically due to the convolution of the charges of Mo and H.

A Study of Mg Capping Inside p-tert-butylcalix[4]arene Adsorbed on a Ge(100) Surface

  • Shin, Minjeong;Lee, Myungjin;Lee, Hangil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.135-135
    • /
    • 2013
  • The electronic and adsorption structures of Mg and p-tert-butylcalix[4]arene (p-TBCA) adsorbed onto a Ge(100) surface under a variety of sample conditions were characterized using high-resolution photoemission spectroscopy (HRPES) and their corresponding DFT calculation results. Interestingly, after 0.10 ML p-TBCA molecules had been adsorbed onto a Ge(100) surface, subsequent adsorption of a small amount of metallic Mg (~0.10 ML) resulted in the formation of a capped structure inside the pre-adsorbed p-TBCA molecules. The adsorption structures resulting from further deposition of Mg (~0.50 ML) onto the Ge(100) surface were monitored based on the surface charge state and Mg 2s core level spectrum. Work function measurements clearly indicated the electronic structures of the Mg and p-TBCA adsorbed onto the Ge(100) surface. Moreover, we confirmed that three different adsorption structures are experimentally favorable at room temperature through DFT calculation results.

  • PDF

Adsorption of cationic birchwood xylan on Hw-BKP and its effect on paper properties (양이온성 자일란의 Hw-BKP에의 흡착특성과 이에 따른 종이 물성 변화)

  • Lee, Sang-Hoon;Lee, Hak-Lae;Youn, Hye-Jung;Xiang, Zhu Hong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • The possibility of applying birchwood xylan in papermaking process to improve dry strength of paper was investigated. Unmodified xylan barely adsorbed onto pulp fibers while cationically modified xylan adsorbed substantially. Adsorption of cationically modified xylan by quaternarization with 3-chloro-2-hydroxypropy trimethylammonium chloride improved dry strength of paper. Chemical structure and degree of substitution of the cationically modified xylan was determined by 400 MHz 13CNMR spectroscopy and elemental analyzer. The amount of adsorbed xylan on cellulose fibers was greater when the cationicity was moderate, and it was interpreted that the conformation of this cationic xylan adsorbed on fiber surface was more favorable for greater adsorption due to its greater loop formation tendency while highly cationic xylan tends to adsorbed in stretched conformation. The physical properties of handsheets increased as the amount of adsorbed cationic xylan increased. On the other hands, the optical properties decreased with xylan adsorption.

Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed $TiO_2$/Y Zeolites using Visible Light

  • Lee, Jeong-Jin;Kim, Yanghee;Minjoong Yoon
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2001
  • Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed TiO$_2$/Y zeolites. Nile Red was successfully adsorbed on TiO$_2$/Y zeolites and the absorption profile is very broad with maxima, ca. 630 nm. The peak is largely red-shifted compared to that observed in hydrocarbon solvents. Furthermore, a broad and largely Stokes shifted emission band as observed around 660 nm. The largely Stokes shifted emission band should be originated from the excited state structural changes. In order to understand the photocatalytic activities of Nile Red-adsorbed TiO$_2$/Y zeolite, the photoreduction of Methyl Orange(5.0$\times$10$^{-5}$ M) was studied using visible light beyond 320 nm. Methyl Orange was effectively reduced by Nile Red-adsorbed TiO$_2$/Y zeolite, indicating the photocatalytic activity of Nile Red-adsorbed TiO$_2$ zeolites was enhanced by about eight times higher than that of TiO$_2$/Y zeolite.

  • PDF

Effect of Light Metal Ions and Competition among Heavy Metal Ions during the Adsorption of Heavy Metal Ions by Bark (수피에 의한 중금속 흡착시 경금속의 영향과 중금속간의 흡착 경쟁)

  • Paik, Ki-Hyon;Kim, Dong-Ho;Choi, Don-Ha
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.115-118
    • /
    • 1997
  • When the light metals such as $Ca^{++}$ and $Mg^{++}$ were added to heavy metal solution, the adsorption of heavy metals was increased by 20 to 30% more, but there were no differences between species. $Pb^{++}$ was the most adsorbed metal(99.5%), and the adsorption ratio of $Cd^{++}$ was significantly improved. In addition, when the light metal concentration was increased to 100ppm, the adsoption ratios of all four heavy metals were reached to 92 to 99%, while coniferous barks showed only 85 to 92%. On the mixture of four heavy metals, the adsorbed amount of each metal was significantly reduced, compared with that of one heavy metal, while $Zn^{++}$ showed the adsorption improvement to 95%. On the column experiment, $Pb^{++}$ was almost completely adsorbed in the upper part of column, and the adsorbed amount of $Cu^{++}$ was gradually decreased depending on column depth. However, $Cd^{++}$ and $Zn^{++}$ were not influenced by column height, and constantly adsorbed on various column height. Based on the above results, each heavy metal had different adsorption mechanism.

  • PDF

Interaction of acetone molecule on Si(001) surface: A theoretical study (Si(001) 표면과 acetone 분자의 상호작용에 대한 이론적 연구)

  • Baek, Seung-Bin;Kim, Dae-Hee;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.35-39
    • /
    • 2008
  • We study the interaction of acetone molecule $[(CH_3)_2CO]$ on Si(001) surface using density functional theory. An acetone molecule is adsorbed on a Si atom of the Si dimer of the Si(001) surface. The adsorption of the acetone molecule on the Si atom at lower height between the two Si atoms of the dimer is more favorable than that on the Si atoms at upper height. Then we calculate an energy variation of dissociation and four-membered ring structures of the acetone molecule adsorbed on the Si surface. Total energy difference between the two structures is about 0.05 eV, indicating that the two structures are almost equally stable. Energy barrier exists when a hydrogen atom is dissociated and adsorbed on the other Si atom of the dimer, while energy barrier does not exist when the adsorbed acetone molecule changes to four-membered ring structure, except for the rotation of the acetone molecule along z-direction. Therefore, four-membered ring structure is kinetically more favorable than the dissociation structure when the acetone molecule is adsorbed on the Si(001) surface.

  • PDF

Comparison of CO on Carbon-supported Pt Catalysts Prepared by CO Gas Bubbling and Methanol Dehydrogenation

  • Han, Kee-Sung;Hwang, Ki-Ju;Han, Oc-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2442-2444
    • /
    • 2007
  • CO adsorbates on the surface of Pt supported on carbon catalysts (Pt/C) were investigated by CO stripping voltammetry. Three types of CO adsorbed samples were prepared: by methanol dehydrogenation only (COm), by CO gas bubbling only (COg), and by methanol dehydrogenation followed by CO gas bubbling (COm+g). Our coverage data show that CO gas can be adsorbed on Pt/C catalyst already saturated with CO adsorbates by methanol dehydrogenation. The COm+g sample showed the properties of both COm as well as COg samples in terms of the potential although the CO adsorbed by dehydrogenation was completely exchanged with CO in the electrolyte solution. Therefore, the oxidation pathways of CO on Pt/C were observed to depend on the initial adsorption conditions of CO more strongly than on the CO coverage. Our results imply that an initial CO poisoning condition in fuel cell operation is an important factor to determine the difficulty in removing the adsorbed CO and confirm that the properties of the adsorbed CO do not change even with chemical replacement with CO in different conditions. In addition, our results indicate a low CO surface mobility on the Pt in an electrolyte solution.

Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach

  • Moon, Hye Sook;Lee, Ji Hye;Kwon, Soonchul;Kim, Il Tae;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.116-120
    • /
    • 2015
  • We investigated the adsorption of Na on graphene and graphene oxide, which are used as anode materials in sodium ion batteries, using density functional theory. The adsorption energy for Na on graphene was -0.507 eV at the hollow sites, implying that adsorption was favorable. In the case of graphene oxide, Na atoms were separately adsorbed on the epoxide and hydroxyl functional groups. The adsorption of Na on graphene oxide-epoxide (adsorption energy of -1.024 eV) was found to be stronger than the adsorption of Na on pristine graphene. However, the adsorption of Na on graphene oxide-hydroxyl resulted in the generation of NaOH as a by-product. Using density of states (DOS) calculations, we found that the DOS of the Na-adsorbed graphene was shifted down more than that of the Na-adsorbed graphene oxide-epoxide. In addition, the intensity of the DOS around the Fermi level for the Na-adsorbed graphene was higher than that for the Na-adsorbed graphene oxide-epoxide.